Câu hỏi:

13/07/2024 4,055 Lưu

Cho đường thẳng d và hai điểm A, B nằm cùng một phía của d và AB không song song với d. Một điểm M di động trên d. Tìm vị trí của M sao cho |MA−MB| là lớn nhất

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vì AB không song song với d nên AB cắt d tại N.

Với điểm M bất kỳ thuộc d mà M không trùng với N thì ta có tam giác MAB.

Theo hệ quả bất đẳng thức tam giác ta có:

|MA−MB| < AB

Khi M ≡ N thì

|MA−MB|= AB

Vậy |MA−MB| lớn nhất là bằng AB, khi đó M ≡ N là giao điểm của hai đường thẳng d và AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong ΔABD, ta có:

AD < AB + BD (bất đẳng thức tam giác) (1)

Trong ΔADC, ta có:

AD < AC + DC (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2), ta có:

2AD < AB + BD + AC + DC ⇔ 2AD < AB + AC + BC

Vậy AD < (AB + AC + BC) / 2 .

Lời giải

Giả sử ΔABC có AB = 7cm, AC = 2cm.

Theo định lý và hệ quả của bất đẳng thức tam giác, ta có:

AB - AC < BC < AB + AC

⇒ 7 - 2 < BC < 7 + 2 ⇔ 5 < BC < 9

Vì số đo cạnh BC là một số tự nhiên lẻ nên BC = 7 (cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP