Câu hỏi:
13/07/2024 1,067Chứng minh rằng nếu một tam giác có hai trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.
Gọi I là giao điểm BD và CE, ta có:
BI = 2/3 BD (tính chất đường trung tuyến) (1)
CI = 2/3 CE (tính chất đường trung tuyến) (2)
Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI
Do BD = CE suy ra: BI + ID = CI + IE
Mà BI = CI ( chứng minh trên) nên : ID = IE
Xét ΔBIE và ΔCID, ta có:
BI = CI (chứng minh trên)
∠(BIE) = ∠(CID) (đối đỉnh)
IE = ID (chứng minh trên)
Suy ra: ΔBIE = ΔCID (c.g.c)
Suy ra: BE = CD (hai cạnh tương ứng) (3)
Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)
CD = 1/2 AC (vì D trung điểm AC) (5)
Từ (3), (4) và (5) suy ra: AB = AC.
Vậy tam giác ABC cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC cân tại A có AB = AC = 34cm, BC = 32cm. Kẻ đường trung tuyến AM. Chứng minh rằng AM ⊥ BC.
Câu 2:
Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho BE = 1/3 BC. Gọi K là giao điểm của AE và CD. Chứng minh rằng DK = KC.
Câu 3:
Cho tam giác ABC với đường trung tuyến AD. Trên tia AD lấy điểm E sao cho AD = DE, trên tia BC lấy điểm M sao cho BC = CM. Tìm trọng tâm của tam giác AEM.
Câu 4:
Tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. Chứng minh rằng ∠(BAC) = 90o
Câu 5:
Gọi G là trọng tâm của tam giác ABC. Vẽ điểm D sao cho G là trung điểm của AD. Chứng minh rằng: Các cạnh của tam giác BGD bằng 2/3 các đường trung tuyến của tam giác ABC.
Câu 6:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Tính số đo góc ABD.
Câu 7:
Hai đoạn thẳng AB và CD cắt nhau tại trung điểm của mỗi đoạn. Gọi E và F theo thứ tự là trung điểm của các đoạn thẳng AD và BD. Các đoạn thẳng CE và CF lần lượt cắt đoạn thẳng AB tại I, J. Chứng minh rằng: AI = IJ = JB
về câu hỏi!