Cho tam giác ABC. Hãy tìm một điểm sao cho khoảng cách từ điểm đó đến mỗi đường thẳng AB, BC, CA là bằng nhau, đồng thời khoảng cách này là ngắn nhất.
Câu hỏi trong đề: Sách bài tập Toán 7 Tập 2 !!
Quảng cáo
Trả lời:
* Nếu O là điểm nằm trong ΔABC
Kẻ OH ⊥ AB, OK ⊥ BC, OI ⊥ AC
Vì điểm O cách đều các đường thẳng AB, BC, CA nên: OH = OK = OI
+) Ta có: OH = OK nên O nằm trên đường phân giác của góc ∠ABC.
Do OK = OI nên O nằm trên đường phân giác của góc ∠ACB
Do OH = OI nên O nằm trên đường phân giác của góc ∠BAC
Vậy O là giao điểm các đường phân giác trong của ΔABC
* Nếu O' nằm ngoài ΔABC
Kẻ O'D ⊥ AB, O'E ⊥ BC, O'F ⊥ AC
Vì O' cách đều ba đường thẳng AB, BC, AC nên: O'D = O'E = O'F
Vì O'D = O'F nên O' nằm trên tia phân giác của ∠(BAC)
Vì O'D = O'E nên O' nằm trên tia phân giác của ∠(DBC)
Suy ra O' là giao điểm phân giác trong của ∠(BAC) và phân giác ngoài tại đỉnh B.
Khi đó A, O, O' thẳng hàng ( vì hai tia AO và AO’ đều là tia phân giác của góc BAC) và A, H, D thẳng hàng
Ta có: OH < O'D
Vậy O là giao điểm các đường phân giác trong ΔABC cách đều ba đường thẳng AB, BC, CA và ngắn nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ MH ⊥ AB, MK ⊥ AC
Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)
Xét hai tam giác MHB và MKC, ta có:
∠(MHB) = ∠(MKC) = 90º
MH = MK (chứng minh trên)
MB = MC (gt)
Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)
Suy ra: ∠B = ∠C (hai góc tương ứng)
Vậy tam giác ABC cân tại A.
Lời giải
Trong ∆ABC, ta có:
∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)
Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o
Ta có:
∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)
∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)
Trong ∆BIC, ta có:
∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)
Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)
= 180o - 1/2 .110o = 125o
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.