Câu hỏi:
13/07/2024 834Cho tam giác ABC. Trên tia phân giác của góc B, lấy điểm O nằm trong tam giác ABC sao cho O cách đều hai cạnh AB, AC. Khẳng định nào sau đây sai?
(A) Điểm O nằm trên tia phân giác của góc A.
(B) Điểm O không nằm trên tia phân giác của góc C.
(C) Điểm O cách đều AB, BC.
(D) Điểm O cách đều AB, AC, BC.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Điểm O cách đều AB, AC nên O thuộc tia phân giác của góc A. Mặt khác, O thuộc tia phân giác của góc B nên O là giao điểm của ba đường phân giác của tam giác ABC. Vậy (B) sai còn (A), (C), (D) đúng.
Đáp số: (B) Điểm O không nằm trên tia phân giác của góc C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có ∠A = 70o, các đường phân giác BD, CE cắt nhau ở I. Tính ∠(BIC).
Câu 2:
Tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác. Chứng minh rằng tam giác đó là tam giác cân.
Câu 3:
Cho tam giác ABC cân tại A. Gọi G là trọng tâm của tam giác, gọi I là giao điểm các đường phân giác của tam giác. Chứng minh rằng ba điểm A, G, I thẳng hàng.
Câu 4:
Cho tam giác ABC cân tại A. Các đường phân giác BD, CE cắt nhau ở K. Chứng minh rằng AK đi qua trung điểm của BC.
Câu 5:
Cho tam giác ABC cân tại A, D là trung điểm của BC. Gọi E và F là chân các đường vuông góc kẻ từ D đến AB và AC. Chứng minh rằng DE = DF.
Câu 6:
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC. Chứng minh rằng AD = AE
Câu 7:
Cho tam giác ABC. Các tia phân giác các góc A và C cắt nhau ở I. Các đường phân giác các góc ngoài tại đỉnh A và C cắt nhau ở K. Chứng minh rằng ba điểm B, I, K thẳng hàng.
về câu hỏi!