Câu hỏi:

13/07/2024 2,840

Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (hình dưới). Chứng minh rằng A là trung điểm của EF.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔABC và ΔCEA, ta có:

∠(ACB) = ∠(CAE) (so le trong, AE // BC)

AC cạnh chung

∠(CAB) = ∠(ACE) (so le trong, CE // AB)

Suy ra: ΔABC = ΔCEA (g.c.g)

⇒ BC = AE (1)

Xét ΔABC và ΔBAF, ta có:

∠(ABC) = ∠(BAF) (so le trong, AF // BC)

AB cạnh chung

∠(BAC) = ∠(ABF) (so le trong, BF // AC)

Suy ra: ΔABC = ΔBAF (g.c.g)

⇒ AF = BC (2)

Từ (1) và (2) suy ra: AE = AF

Vậy A là trung điểm của EF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong ΔABC ta có H là trực tâm nên:

AH ⊥ BC, BH ⊥ AC, CH ⊥ AB

Trong ΔAHB, ta có:

       AC ⊥ BH

       BC ⊥ AH

Vì hai đường cao kẻ từ A và B cắt nhau tại C nên C là trực tâm của tam giác AHB.

Trong ΔHAC, ta có:

       AB ⊥ CH

       CB ⊥ AH

Vì hai đường cao kẻ từ A và C cắt nhau tại B nên B là trực tâm của ΔHAC.

Trong ΔHBC, ta có:

       BA ⊥ HC

       CA ⊥ BH

Vì hai đường cao kẻ từ B và C cắt nhau tại A nên A là trực tâm của tam giác HBC.

Lời giải

Tam giác ABC có AB = AC = 13 cm nên tam giác ABC cân tại A

Suy ra: đường trung tuyến AM cũng là đường cao.

Suy ra: AM ⊥ BC

Ta có: MB = MC = 1/2 BC = 1/2 .10 = 5 (cm)

Trong tam giác vuông AMB có ∠(AMB) = 90o

Áp dụng định lý Pitago ta có:

AB2 = AM2 + MB2

Suy ra: AM2 = AB2 - MB2

= 132 - 52 = 169 - 25 = 144

Vậy AM = 12(cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay