Câu hỏi:

13/07/2024 4,327

Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Xét tam giác có đường cao và đường trung tuyến cùng xuất phát từ cùng 1 đỉnh và không trùng nhau :

Vì đường cao và đường trung tuyến xuất phát từ cùng một đỉnh lần lươt là đường vuông góc và đường xiên kẻ từ cùng một điểm đến cùng một đường thẳng.

Do đó,đường cao nhỏ hơn đường trung tuyến (1)

+) Xét tam giác cân có đường cao và đường trung tuyến cùng xuất phát từ đỉnh của tam giác cân nên chúng bằng nhau (2)

Từ (1) và (2) suy ra: trong tam giác cân, đường cao không lớn hơn đường trung tuyến xuất phát từ cùng 1 đỉnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp Bnhọn (hình 83a)

Trong Δ ABC, ta có: AB < AC

Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)

* Trường hợp Btù (hình 83b)

Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)

Vậy ∠(HAB) < ∠(HAC).

Lời giải

+) Xét tam giác EIA vuông tại I nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét hai tam giác ABH và ∆EAI có:

AB = AE ( vì ABDE là hình vuông)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Suy ra: ∆ABH = ∆ EAI ( cạnh huyền – góc nhọn)

⇒ AH = EI ( hai cạnh tương ứng)

+) Tương tự hai tam giác vuông ACH và GAJ bằng nhau.

⇒ AH = GJ.

Suy ra EI = AH = GJ.

+) Xét ΔEKI và ΔGKJ có:

EI = GJ ( chứng minh trên)

∠(IKE) = ∠(JKG) (đối đỉnh).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

do đó ΔEKI = ΔGKJ ( cgv – gn)

suy ra: KE = KG

Từ đó ta có K trung điểm của EG. Vậy AK là trung tuyến của tam giác AEG.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay