Câu hỏi:
13/07/2024 8,655Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: BD là đường thẳng trung trực của AE
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Xét ΔABD và ΔEBD có:
BD chung
∠ABD = ∠EBD ( do BD ,là tia phân giác của góc ABC )
∠BAD = ∠BED = 90º
Suy ra: ΔABD = ΔEBD (cạnh huyền – góc nhọn) ⇒ BA = BE, DA = DE.
Do BA = BE nên B thuộc đường trung trực của AE.
Do DA = DE nên D thuộc đường trung trực của AE.
Do đó BD là đường trung trực của AE.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC thì tam giác đo vuông tại A.
Câu 2:
Trong mặt phẳng tọa độ hãy vẽ đường thẳng đi qua hai điểm O(0;0) và A(1;2). Đường thẳng OA là đồ thị của hàm số nào?
Câu 3:
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: DF = DC
Câu 4:
Cho tam giác ABC, đường cao AH. Vẽ điểm D sao cho AB là đường trung trực của HD. Vẽ điểm E sao cho AC là đường trung trực của HE. Gọi M, N theo thứ tự là giao điểm của DE với AB, AC. Xét xem các đường thẳng sau là các đường gì trong tam giác HMN: MB, NC, HA, HC, MC, từ đó hãy chứng minh rằng MC vuông góc với AB.
Câu 5:
Hàm số y = f(x) được cho bởi công thức y = -1,5x. Vẽ đồ thị của hàm số trên
về câu hỏi!