Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta chia hình lập phương thành sáu khối tứ diện bằng nhau như sau:
+ Chia khối lập phương ABCD.A’B’C’D’ thành hai khối lăng trụ tam giác bằng nhau: ABD.A’B’D’ và BCD.B’C’D’.
+ Tiếp đó, lần lượt chia khối lăng trụ ABD.A’B’D’ và BCD.B’C’D’ thành ba tứ diện: DABB’, DAA’B’ và DCBB’, DCC’B’, DD’C’B’.
+ Ta chứng minh được các khối tứ diện này bằng nhau như sau:
- Hai khối tứ diện DABB’ và DAA’B’ bằng nhau vì chúng đối xứng nhau qua mặt phẳng (DAB’) (1)
- Hai khối tứ diện DAA’B’ và DD’A’B’ bằng nhau vì chúng đối xứng nhau qua mặt phẳng (B’A’D) (2)
Từ (1) và (2) suy ra ba khối tứ diện DABB’, DAA’B’ và DD’A’B’ bằng nhau.
- Tương tự, ba khối tứ diện DCBB’, DCC’B’, DD’C’B’ cũng bằng nhau.
Vậy khối lập phương ABCD.A’B’C’D’ được chia thành sáu khối tứ diện bằng nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó phải là một số chẵn. Cho ví dụ:
Câu 5:
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng hai lăng trụ ABD.A’B’D’ và BCD.B’C’D’ bằng nhau
Câu 6:
Kể tên các mặt của hình lăng trụ ABCDE.A’B’C’D’E’ và hình chóp S.ABCDE (h.1.4 ).
về câu hỏi!