Câu hỏi:
13/07/2024 4,663Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.
Câu hỏi trong đề: Giải sách bài tập Hình học 11 !!
Quảng cáo
Trả lời:
Gọi B' là ảnh của B qua phép đối xứng qua trục d.
Khi đó với mỗi điểm M thuộc d
MA + MB = MA + MB′ nên MA + MB′ bé nhất
⇔ A, M, B′ thẳng hàng.
Tức là M = (AB′) ∩ d.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cho hình vuông ABCD. Gọi F là phép đối xứng trục d biến hình vuông đó thành chính nó.
Lí luận tương tự, ta thấy A chỉ có thể biến thành các điểm A, B, C hoặc D
- Nếu A biến thành chính nó thì C chỉ có thể biến thành chính nó và B biến thành D.
Từ đó suy ra F là phép đối xứng qua trục AC
- Nếu A biến thành B thì d là đường trung trực của AB.
Khi đó C biến thành D.
Các trường hợp khác lập luận tương tự.
Do đó hình vuông ABCD có bốn trục đối xứng là các đường thẳng AC, BD và các đường trung trực của AB và BC.
Lời giải
Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .
Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:
Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.
Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0
Thay (1) vào phương trình của (C) ta được .
Từ đó suy ra phương trình của (C') là .
Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,
từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.