Câu hỏi:

13/07/2024 5,040 Lưu

Cho đường tròn (O), hai dây AB, CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB > CD, chứng minh rằng MH > MK.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HB (gt)

Suy ra : OH ⊥ AB (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : OK ⊥ CD (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

OM2=OH2+HM2

Suy ra : HM2=OM2-OH2 (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

OM2=OK2+KM2

Suy ra: KM2=OM2-OK2 (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: HM2>KM2 hay HM > KM

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kẻ OK ⊥ CD ⇒ CK = DK = (1/2).CD

Kẻ OH ⊥ AB ⇒ AH = BH = (1/2).AB

Vì AB // CD nên H, O, K thẳng hàng

Áp dụng định lí Pitago vào tam giác vuông OBH ta có:

OB2=BH2+OH2

Suy ra: OH2=OB2-BH2=252-202= 225

OH = 15 (cm)

Áp dụng định lí Pitago vào tam giác vuông ODK ta có:

OD2=DK2+OK2

Suy ra: OK2=OD2-DK2=252-242 = 49

OK = 7 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Trường hợp O nằm giữa hai dây AB và CD (hình a):

HK = OH + OK = 15 + 7 = 22 (cm)

* Trường hợp O nằm ngoài hai dây AB và CD (hình b):

HK = OH – OK = 15 – 7 = 8 (cm)

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC có Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên suy ra :

BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)

Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)

Mà BC > AC > AB nên suy ra:

OH < OI < OK (dây lớn hơn gần tâm hơn)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP