Câu hỏi:

11/07/2024 2,707

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng vuông góc với AB tại B cắt đường tròn (O) và (O’) theo thứ tự C và D (khác B). Chứng minh rằng OO’ = 1/2CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(ABC) = 90° nên A, O, C thẳng hàng.

(ABD) = 90° nên A, O’, D thẳng hàng.

OO’ là đường trung bình của tam giác ACD nên OO’ = 1/2CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC nội tiếp trong đường tròn (O) có AC là đường kính nên góc (ABC) = 90°

Tam giác ABD nội tiếp trong đường tròn (O’) có AD là đường kính nên góc (ABD) = 90°

Ta có:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy ba điểm C, B, D thẳng hàng và AB ⊥ CD

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OH ⊥ CD, O’K ⊥ CD

Ta có: IA ⊥ CD

Suy ra : OH // IA // O’K

Theo giả thiết : IO = IO’

Suy ra : AH = AK (tính chất đường thẳng song song cách đều) (1)

Ta có : OH ⊥ AC

Suy ra : HA = HC = (1/2).AC (đường kính dây cung) ⇒ AC = 2AH (2)

Lại có : O’K ⊥ AD

Suy ra : KA = KD = (1/2).AD (đường kính dây cung) ⇒ AD = 2AK (3)

Từ (1), (2) và (3) suy ra: AC = AD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP