Câu hỏi:

12/07/2024 40,492

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh

a) (ADF) // (BCE).

b) M′N′ // DF.

c) (DEF) // (MM′N′N) và MN // (DEF).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà AD, AF ⊂ (ADF)

Nên (ADF) // (BCE)

b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

So sánh (1) và (2) ta được:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Từ chứng minh trên suy ra DF // (MM′N′N)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà DF,EF ⊂ (DEF) nên (DEF) // (MM′N′N)

Vì MN ⊂ (MM′N′N) và (MM′N′N) // (DEF) nên MN // (DEF).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ABD. Chứng minh rằng (G1G2G3) // (BCD).

Xem đáp án » 12/07/2024 35,308

Câu 2:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi H là trung điểm của A'B'.

a) Chứng minh rằng CB′ // (AHC′)

b) Tìm giao tuyến d của (AB'C') và (ABC)

Xem đáp án » 12/07/2024 13,966

Câu 3:

Cho tứ diện ABCD. Gọi I và J lần lượt là hai điểm di động trên các cạnh AD và BC sao cho IAID = JBJC . Chứng minh rằng IJ luôn luôn song song với một mặt phẳng cố định.

Xem đáp án » 12/07/2024 7,767

Câu 4:

Cho hình lăng trụ tam giác ABCA'B'C' có các cạnh bên là AA', BB', CC'. Gọi I và I'tương ứng là trung điểm của hai cạnh BC và B'C'.

a) Chứng minh rằng AI // A'I'.

b) Tìm giao điểm của IA' với mặt phẳng (AB'C').

c) Tìm giao tuyến của (AB'C') và (A'BC).

Xem đáp án » 12/07/2024 6,447

Câu 5:

Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng (α) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A’, B’, C’ và D’.

a) Chứng minh rằng (Ax,By) // (Cz,Dt) và (Ax,Dt) // (By,Cz)

b) Tứ giác A'B'C'D' là hình gì?

c) Chứng minh AA′ + CC′ = BB′ + DD′.

Xem đáp án » 12/07/2024 5,539

Câu 6:

Cho ba mặt phẳng (α), (β), (γ) song song với nhau. Hai đường thẳng a và a’ cắt ba mặt phẳng ấy theo thứ tự nói trên tại A, B, C và A’, B’, C’. Cho AB = 5, BC = 4, A′C′ = 18. Tính độ dài.A’B’, B’C’

Xem đáp án » 12/07/2024 5,107

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn