Câu hỏi:

04/05/2020 8,109

Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.

a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).

b) Tính góc giữa AB và mặt phẳng (AOI).

c) Tính góc giữa các đường thẳng AI và OB.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BC ⊥ OA & BC ⊥ OI ⇒ BC ⊥ (OAI)

⇒ (ABC) ⊥ (OAI).

b) + Xác định góc α giữa AB và mặt phẳng (AOI)

(A ∈ (OAI) & BI ⊥ (OAI) ⇒ ∠[(AB,(OAI))] = ∠(BAI) = α.

+ Tính α:

Trong tam giác vuông BAI, ta có: sinα = 1/2 ⇒ α = 30o.

c) Xác định góc β giữa hai đường thẳng AI và OB:

Gọi J là trung điểm OC,

ta có: IJ // OB và IJ ⊥ (AOC). Như vậy:

∠[(AB,OB)] = ∠[(AI,IJ)] = ∠(AIJ) = β.

+ Tính góc:

Trong tam giác IJA,

ta có: tan β = AJ/IJ = √5 ⇒ β = arctan√5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.

a) Chứng minh tam giác SBC vuông

b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.

Chứng minh (SAC) ⊥ (SBH)

c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)

Xem đáp án » 12/07/2024 111,518

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).

a) Chứng minh BD ⊥ SC.

b) Chứng minh (SAB) ⊥ (SBC).

c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).

Xem đáp án » 12/07/2024 10,501

Câu 3:

Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.

a) Chứng minh AC ⊥ SD

b) Chứng minh MN ⊥ (SBD)

c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)

Xem đáp án » 12/07/2024 9,833

Câu 4:

Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, BAD^ = 60ο, SA = SB = SD = a.

a) Chứng minh (SAC) vuông góc với (ABCD).

b) Chứng minh tam giác SAC vuông.

c) Tính khoảng cách từ S đến (ABCD).

Xem đáp án » 12/07/2024 5,242

Bình luận


Bình luận