Câu hỏi:

13/07/2024 2,506

Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ. Chứng minh LBH, LIH, KIH, và KCH là 4 góc bằng nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

Tứ giác BIHL nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác CIHK nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1), (2) suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: BS ⊥ BE (tính chất đường phân giác của hai góc kề bù)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Và CS ⊥ CE (tính chất đường phân giác của hai góc kề bù)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BSCE ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy tứ giác BSCE nội tiếp đường tròn

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP