Câu hỏi:

11/07/2024 4,638

Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.

d) ME cắt đường tròn (O) tại F (khác E). Chứng minh: ∠(MOF) = ∠(MEH )

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: ∠(CFE) = 900 (F thuộc đường tròn đường kính CE)

Lại có CF là đường cao nên MC2 = MF.ME

Tương tự, ta có: MC2 = MH.MO

⇒ ME.MF = MH.MO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét ΔMOF và ΔMEN có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠(FMO) chung

⇒ ΔMOF ∼ ΔMEN (c.g.c)

⇒ ∠(MOF) = ∠(MEH)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

⇔ x - 3 = 4

⇔ x = 7 (TM ĐKXĐ)

Vậy phương trình có nghiệm x = 7

Lời giải

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) = 900 nên ∠(MDO) =900

⇒ MD là tiếp tuyến của (O)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP