Câu hỏi:

13/07/2024 1,613 Lưu

Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h.119). Cho hình đó quay quanh trục GO. Chứng minh rằng:

a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.

b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.

Giải bài 43 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hình 119

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựng GH vuông góc EF.

Giải bài 44 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thể tích phần cần tính gồm:

- Thể tích hình trụ (một đáy) đường kính đáy 11cm, chiều cao 2cm (V1).

- Thể tích hình trụ (một đáy) đường kính đáy 6cm, chiều cao 7cm (V2).

Giải bài 38 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

Cách 1: Áp dụng công thức

- Với hình nón cụt có các bán kính các đáy là r1, r2, đường sinh l và chiều cao h thì :

SXq=πr1+r21V=1/3πhr12+r22+r1r2

Như vậy :

Diện tích xung quanh hình nón cụt thì bằng tích của số π với tổng hai bán kính và với đường sinh.

Thể tích của hình nón cụt thì bằng 1/3 tích của số π với đường cao h và tổng bình phương các bán kính cộng thêm tích của hai bán kính .

Cách 2: Vì hình nón cụt được cắt ra từ hình nón nên ta có thể tính

V(nón cụt )=V(nón lớn )-V(nón nhỏ )

S(xq nón cụt )=S(xq nón lớn )-S(xq nón nhỏ )

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP