Câu hỏi:
31/08/2020 1,217Lớp 10A có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả ba môn Toán, Lý, Hoá. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá ) của lớp 10A là:
Quảng cáo
Trả lời:
Đáp án C
Số học sinh giỏi toán, lý mà không giỏi hóa: 3−1=2.
Số học sinh giỏi toán, hóa mà không giỏi lý: 4−1=3.
Số học sinh giỏi hóa, lý mà không giỏi toán: 2−1=1.
Số học sinh chỉ giỏi môn lý: 5−2−1−1=1.
Số học sinh chỉ giỏi môn hóa: 6−3−1−1=1.
Số học sinh chỉ giỏi môn toán: 7−3−2−1=1.
Số học sinh giỏi ít nhất một (môn toán, lý, hóa) là số học sinh giỏi 1 môn hoặc 2 môn hoặc cả 3 môn: 1+1+1+1+2+3+1=10.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:
Câu 2:
Cho các tập hợp khác rỗng A= [m−1;m+32] và B = (−∞;−3) ∪ [3;+∞). Tập hợp các giá trị thực của mm để A ∩ B ≠ ∅ là:
Câu 3:
Cho A ={x∈ R ||mx−3| = mx−3}, B = {x ∈ R |x2−4 = 0}. Tìm m để B∖A=B
Câu 4:
Cho các tập hợp khác rỗng A = (−∞; m) và B = [2m−2; 2m+2]. Tìm m ∈ R để (CRA) ∩ B ≠ ∅.
Câu 6:
Cho A = (2;+∞), B=(m;+∞). Điều kiện cần và đủ của m sao cho B là tập con của A là:
Câu 7:
Cho ba tập hợp:
M: tập hợp các tam giác có 2 góc tù.
N: tập hợp các tam giác có độ dài ba cạnh là ba số nguyên liên tiếp.
P: tập hợp các số nguyên tố chia hết cho 3.
Tập hợp nào là tập hợp rỗng?
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận