Câu hỏi:

13/07/2024 7,875

Cho tam giác ABC. Trên cạnh BC ta lấy 6 điểm. Nối đỉnh A với mỗi điểm vừa chọn. Hỏi đếm được bao nhiêu hình tam giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta nhận xét :

- khi lấy 1 điểm thì tạo thành 2 tam giác đơn ABD và ADC. Số tam giác đếm được là 3 : ABC, ADB và ADC. Ta có :     1 + 2 = 3 (tam giác)

- khi lấy 2 điểm thì tạo thành 3 tam giác đơn và số tam giác đếm được là 6 :

ABC, ABD, ADE, ABE, ADC và AEC. Ta có : 1+ 2 + 3 = 6 (tam giác)

          Vậy khi lấy 6 điểm ta sẽ có 7 tam giác đơn được tạo thành và số tam giác đếm được là :          1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 (tam giác)

Cách 2 :- Nối A với mỗi điểm D, E, …, C ta được một tam giác có cạnh AD. Có 6 điểm như vậy nên có 6 tam giác chung cạnh AD (không kể tam giác ADB vì đã tính rồi)

          Lập luận tương tự như  trên theo thứ tự ta có 5, 4, 3, 2, 1 tam giác chung cạnh AE, AP, …, AI.

          Vậy số tam giác tạo thành là : 7 + 6 + 5 + 4 +3 +2 + 1 = 28 (tam giác).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nối DC ta có

- SCAD = 1/2 SCAB (vì cùng chiều cao hạ từ C xuống AB và đáy DB = DA = 90 : 2 = 45 cm2)

                                                                                                            

- SDAE = 2/3 SADC (Vì cùng chiều cao hạ từ D xuống AC và đáy

E = 2/3 AC) = 45×23= 30 (cm2)

Đáp số SAED = 30 cm2

Lời giải

Nối NI, ta có:

1. - SPME = SPNE (Vì có cùng chiều cao hạ từ P xuống MN, đáy EM = EN)

- SIME = SINE (vì có cùng chiều cao hạ từ xuống MN, đáy EM = EN)         

- Do đó SIMP = SINP (Hiệu hai diện tích bằng nhau)

2. SMNE = SPMF (Vì có cùng chiều cao hạ từ M xuống NP, đáy FN = FP mà SINF = SIFP (vì có cùng chiều cao hạ từ I xuống NP, đáy FN = FP)

Do đó SIMN = SIMP (Giải thích như trên).

Kết hợp (1) và (2) ta có :

SIMP = SINP = SIMN = SMNP : 3 = 1/3 SMNP = 180 : 3 = 60 (cm2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay