Câu hỏi:

13/07/2024 648

Chứng minh rằng tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Gọi một số tự nhiên trong ba số tự nhiên dó là .

Bước 2. Xác định các số tự nhiên còn lại. (Các số tự nhiên liên tiếp hơn kém nhau 1 đơn vị)

Bước 3. Xét tổng

Giả sử ba số tự nhiên liên tiếp đó lần lượt là: a; a+1; a+2

Ta có:

a+ a+1+ a+2= (3a+6)3

Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Tách.

Bước 2. Áp dụng tính chất chia hết của một tổng.

Bước 3. Tìm n.

nn, để n+6n thì 6n (tức là 6 phải chia  hết cho n) mà n nên n1;2;3;6.

Lời giải

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Tách.

Bước 2. Áp dụng tính chất chia hết của một tổng.

Bước 3. Tìm n+1.

Bước 4. Tìm n.

Ta có: 3n+4=3n+3+1=3n+1+1

Để 3n+4n+1 thì 1n+1

n+1=1n=0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP