Câu hỏi:

31/10/2020 214

Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh  SB lấy điểm M . Tìm giao tuyến của  mặt phẳng (ADM) và (SAC)?

Trả lời:

Ta có A là điểm chung thứ nhất của (ADM) và (SAC).

Trong mặt phẳng (BSD), gọi giao điểm của SI và DM là E.

Ta có:

+ E thuộc SI mà SISAC suy ra ESAC.

+ E thuộc DM mà DMADM suy ra EADM.

Do đó E là điểm chung thứ hai của (ADM) và (SAC).

Vậy AE là giao tuyến của (ADM) và (SAC).

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có AC và BD căt nhau tại O. Một điểm S không thuộc mp (ABCD). Trên đoạn SC lấy 1 điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là

Xem đáp án » 31/10/2020 791

Câu 2:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD; BC lần lượt  tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 31/10/2020 711

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.

Xem đáp án » 31/10/2020 613

Câu 4:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?

Xem đáp án » 31/10/2020 589

Câu 5:

Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và  (SGC).

Xem đáp án » 31/10/2020 570

Câu 6:

Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?

Xem đáp án » 31/10/2020 528

Bình luận


Bình luận

Câu hỏi mới nhất

Xem thêm »