Câu hỏi:

31/10/2020 9,268

Cho tứ giác ABCD có AC và BD căt nhau tại O. Một điểm S không thuộc mp (ABCD). Trên đoạn SC lấy 1 điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Chọn mặt phẳng phụ (SBD) chứa SD.                       

+ Tìm giao tuyến của hai mặt phẳng (SBD) và (AMB).

Ta có B là điểm chung thứ nhất của 2 mp đó.

 Trong mặt phẳng (SAC), gọi K là giao điểm của AM và SO.

 Ta có:

+ K thuộc SO mà SOSBD suy ra KSBD

+ K thuộc AM mà AMABM suy ra KABM

Suy ra K  là điểm chung thứ hai của (SBD)  và (ABM).

Do đó giao tuyến của 2 mp này là: BK..

+ Trong mặt phẳng (SBD), gọi SD và BK cắt nhau tại N. Ta có:

▪ N thuộc BK mà BKABM suy ra NABM .

▪ N thuộc SD

Vậy giao điểm của SD và (ABM) là N.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có giao tuyến của 2 mp (ABD) và (BCD)  là BD.

Lại có IMPABDINQBCDI thuộc giao tuyến của (ABD)  và (BCD).

=> I thuộc BD => 3 điểm I; B; D  thẳng hàng.

 Chọn B.

Lời giải

+  Ta có IJ là đường trung bình của tam giác SAB nên IJ// AB// CD

 => IJCD là hình thang. Do đó A đúng.

+ Ta có IBSABIBIBCSABIBC=IB.  Do đó B đúng.

+ Ta có JDSBDJDJBDSBDJBD=JD.  Do đó C đúng.

 + Trong mặt phẳng (IJCD), gọi  IC và JD cắt nhau tại M

Trong mp (ABCD), gọi O là giao điểm của AC  và BD.

    * Tìm giao tuyến của (IAC)  và ( JBD)

 SIA(IAC)SJB(JBD) nên S là điểm chung thứ nhất

lại có:  O AC (IAC)OBD (JBD) nên O là  điểm chung thứ hai .

=> giao tuyến của mặt phẳng (IAC) và (JBD) là SO

 Do đó D sai.

 Chọn D.

Câu 3

Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay