Câu hỏi:
02/02/2021 1,472Cho hình chóp tứ giác đều S.BACD có cạnh đáy bằng a. Các điểm M; N; P lần lượt là trung điểm của SA; SB; SC. Mặt phẳng (MNP) cắt hình chóp theo 1 thiết diện có diện tích bằng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Gọi Q là trung điểm của SD.
Tam giác SAD có M; Q lần lượt là trung điểm của SA; SD suy ra MQ // AD
Tam giác SBC có N ; P lần lượt là trung điểm của SB; SC suy ra NP // BC
Mặt khác AD // BC suy ra MQ // NP và MQ= NP nên MNPQ là hình bình hành .
+ (MNP) và ( SAD) có NP // AD nên chúng cắt nhau theo giao tuyến Mx // AD// BC. – đó chính là MQ, thiết diện của hình chóp cắt bởi (MNP) là hình bình hành : MNPQ.
Do S. ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông cạnh a và có diện tích là:
Tứ giác MNPQ là hình vuông có độ dài cạnh là:
Vậy diện tích MNPQ là
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.
Câu 3:
Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là
Câu 4:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?
Câu 5:
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
Câu 6:
Cho 4 điểm A; B; C; S không đồng phẳng. Gọi I và H lần lượt là trung điểm của SA và AB. Trên SC lấy điểm K sao cho IK không song song với AC ( K không trùng với các đầu mút). Gọi E là giao điểm của BC và (IHK). Tìm mệnh đề đúng
Câu 7:
Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và (SGC).
về câu hỏi!