Câu hỏi:
02/11/2020 1,491Cho hình chóp S. ABCD, M và N là hai điểm thuộc cạnh AB và CD, là mặt phẳng qua MN và song song với SA. Tìm điều kiện của MN để thiết diện là một hình thang.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Ta tìm thiết diện của hình chóp cắt bởi (α):
Trong ( SAB) dựng MQ // SA( Q thuộc SB)
Gọi I là giao điểm của AC và MN.
Trong mp ( SAC); dựng IP// SA với P thuộc SC.
Khi dó thiết diện cần tìm là tứ giác MNPQ.
+ Tứ giác MNPQ là một hình thang khi MN// PQ hoặc MQ// PN.
=> MN//PQ nên tứ giác MNPQ là hình thang.
Vậy để tứ giác MNPQ là hình thang thì điều kiện là MN//BC.
Chọn C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD; M là điểm nằm trong tam giác ABC; mp (α) qua M và song song với AB và CD. Thiết diện của ABCD cắt bởi mp (α) là:
Câu 2:
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và M; N lần lượt là trung điểm của AB; CD . Xác định thiết diện của hình chóp cắt bởi (α) đi qua MN và song song với mặt phẳng (SAD).Thiết diện là hình gì?
Câu 3:
Cho hình chóp S.ABCD, M và N là hai điểm thuộc cạnh AB và CD, (α) là mặt phẳng qua MN và song song với SA. Thiết diện của hình chóp S.ABCD khi cắt bởi (α) là hình gì?
Câu 4:
Cho hình chóp S.ABCD có AD không song song với BC. Lấy M thuộc SB và O là giao điểm AC với BD. Gọi N là giao điểm của SC và ( AMD) biết AN cắt DM tại I. Tìm mệnh đề đúng
Câu 5:
Cho hình chóp S.ABCD có AB không song song CD. Gọi M là trung điểm SC và O là giao điểm AC với BD. Gọi N là giao điểm của SD với ( MAB)
Câu 6:
Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a và tam giác ABC đều. Một điểm M thuộc cạnh BC sao cho BM= x ( 0< x< a), mặt phẳng (α) đi qua M song song với SA và SB. Biết rằng mp (α) cắt hình chóp theo 1 tứ giác. Tính diện tích thiết diện theo a và x
Câu 7:
Cho tứ diện ABCD. Gọi M; N; P lần lượt là các điểm thuộc cạnh AB; AC; BD; . Tìm mệnh đề đúng:
về câu hỏi!