Câu hỏi:

02/11/2020 1,629

Cho hình chóp S. ABCD, M và N  là hai điểm thuộc cạnh AB  và CD, α là mặt phẳng qua MN và song song với SA. Tìm điều kiện của MN để thiết diện là một hình thang.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Ta tìm thiết diện của hình chóp cắt bởi (α):

Trong ( SAB) dựng MQ // SA( Q thuộc SB)

Gọi I là giao điểm của AC và MN.

Trong mp ( SAC); dựng IP// SA với P thuộc SC.

Khi dó thiết diện cần tìm là  tứ giác MNPQ.

+ Tứ giác MNPQ là một hình thang khi MN// PQ hoặc MQ// PN.

=> MN//PQ  nên tứ giác MNPQ là hình thang.

Vậy để tứ giác MNPQ là hình thang thì điều kiện là MN//BC.

Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

     là EF

 

 

 

Lời giải

=> giao tuyến của (SCD) và (α) là NH// SD.

+ lại có HK là giao tuyến của (α) và (SBC) .

Thiết diện là tứ giác MNHK.

Ba mặt phẳng (ABCD) ; (SBC) và (α)  đôi một cắt nhau theo các giao tuyến là MN; HK và BC  mà MN// BC nên MN// HK. Vậy thiết diện là một hình thang .

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP