Câu hỏi:
02/11/2020 760Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M; N sao cho AM= BN. Các đường thẳng song song với AB vẽ từ M; N lần lượt cắt AD và AF tại M’ và N’. Hỏi mp (DEF) song song với mặt phẳng nào ?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD; M là điểm nằm trong tam giác ABC; mp (α) qua M và song song với AB và CD. Thiết diện của ABCD cắt bởi mp (α) là:
Câu 2:
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và M; N lần lượt là trung điểm của AB; CD . Xác định thiết diện của hình chóp cắt bởi (α) đi qua MN và song song với mặt phẳng (SAD).Thiết diện là hình gì?
Câu 3:
Cho hình chóp S.ABCD, M và N là hai điểm thuộc cạnh AB và CD, (α) là mặt phẳng qua MN và song song với SA. Thiết diện của hình chóp S.ABCD khi cắt bởi (α) là hình gì?
Câu 4:
Cho hình chóp S.ABCD có AD không song song với BC. Lấy M thuộc SB và O là giao điểm AC với BD. Gọi N là giao điểm của SC và ( AMD) biết AN cắt DM tại I. Tìm mệnh đề đúng
Câu 5:
Cho hình chóp S.ABCD có AB không song song CD. Gọi M là trung điểm SC và O là giao điểm AC với BD. Gọi N là giao điểm của SD với ( MAB)
Câu 6:
Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a và tam giác ABC đều. Một điểm M thuộc cạnh BC sao cho BM= x ( 0< x< a), mặt phẳng (α) đi qua M song song với SA và SB. Biết rằng mp (α) cắt hình chóp theo 1 tứ giác. Tính diện tích thiết diện theo a và x
Câu 7:
Cho tứ diện ABCD. Gọi M; N; P lần lượt là các điểm thuộc cạnh AB; AC; BD; . Tìm mệnh đề đúng:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
về câu hỏi!