Câu hỏi:
12/07/2024 2,976Chứng minh rằng một số tự nhiên khác 0, có số lượng các ước là một số lẻ thì số tự nhiên đó là một số chính phương
Câu hỏi trong đề: Số nguyên tố, hợp số !!
Quảng cáo
Trả lời:
Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó . Điều này chính tỏ M là một số chính phương.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phân tích các số sau ra thừa số nguyên tố rồi tìm ước của chúng
a, 119
b, 625
c, 200
Câu 2:
Phân tích các số sau ra thừa số nguyên tố rồi cho biết các số đó chia hết cho các số nguyên tố nào:
a, 1764
b, 3936
Câu 3:
Tính một cạnh của hình vuông biết diện tích của nó là:
a, 5929
b, 32400
Câu 4:
a, Tích của hai số a; b bằng 42. Biết a < b, tìm hai số a và b
b, Tìm các số tự nhiên x; y biết (x+5)(y+2) = 102
Câu 5:
a, Tích của ba số lẻ tiên tiếp bằng 105. Tìm ba số đó.
b, Tích của hai số tự nhiên có hai chữ số bằng 204. Tìm hai số đó
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Dạng 1: Thực hiện tính, viết dưới dạng lũy thừa
Dạng 4: Một số bài tập nâng cao về lũy thừa
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 2)
Dạng 4: Trung điểm của đoạn thẳng có đáp án
Dạng 1: tỉ số của hai đại lượng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận