Câu hỏi:

12/07/2024 2,642

Chứng minh rằng một số tự nhiên khác 0, có số lượng các ước là một số lẻ thì số tự nhiên đó là một số chính phương

Câu hỏi trong đề:   Số nguyên tố, hợp số !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M=axbycz... Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó M=a2x'b2y'c2z'...=(ax'by'cz')2. Điều này chính tỏ M là một số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phân tích các số sau ra thừa số nguyên tố rồi tìm ước của chúng

a, 119

b, 625

c, 200

Xem đáp án » 12/07/2024 3,986

Câu 2:

Phân tích các số sau ra thừa số nguyên tố rồi cho biết các số đó chia hết cho các số nguyên tố nào:

a, 1764

b, 3936

Xem đáp án » 12/07/2024 3,539

Câu 3:

Tính một cạnh của hình vuông biết diện tích của nó là:

a, 5929m2

b, 32400m2

Xem đáp án » 12/07/2024 1,964

Câu 4:

a, Tích của hai số a; b bằng 42. Biết a < b, tìm hai số a và b

b, Tìm các số tự nhiên x; y biết (x+5)(y+2) = 102

Xem đáp án » 12/07/2024 1,392

Câu 5:

Chứng minh rằng các số sau là hợp số:

a, 676767

b, 311141111

Xem đáp án » 12/07/2024 1,129

Câu 6:

Tìm số tự nhiên x biết rằng 493 chia hết cho x và 10 < x < 100

Xem đáp án » 12/07/2024 1,089

Bình luận


Bình luận