Câu hỏi:

12/07/2024 327

Cho 4 số tự nhiên không chia hết cho 5 và có số dư khác nhau. Chứng minh rằng tổng của chúng chia hết cho 5. 

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sơ đồ con đường

Lời giải chi tiết

 

Giả sử 4 số tự nhiên là 5b+1, 5c+2, 5d+3, 5e+4

Ta có: Tổng của chúng là:

(5b+1)+(5c+2)+(5d+3)+(5e+4)=5(b+c+d+e+2)5

Vậy ta có đpcm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp chia hết cho 5.

Xem đáp án » 06/11/2020 1,657

Câu 2:

Chứng minh rằng trong 6 số tự nhiên bất kì thì có ít nhất 2 số mà hiệu của chúng chia hết cho 5.

Xem đáp án » 12/07/2024 1,464

Câu 3:

Tổng nào sau đây chia hết cho 5

Xem đáp án » 22/12/2020 1,408

Câu 4:

Chứng minh (61001)5

Xem đáp án » 12/07/2024 742

Câu 5:

Áp dụng tính chất chia hết, xét xem tổng nào chia hết cho 15.

Xem đáp án » 22/12/2020 596

Câu 6:

Số M chia 5 dư 2 và N chia 5 dư 3 thì P=2017M+2016N chia 5 dư mấy?

Xem đáp án » 08/11/2020 496

Câu 7:

Áp dụng tính chất chia hết, xét xem tổng 110+5n+(5n+1)+(5k+1)chia hết cho 5 không?

Xem đáp án » 06/11/2020 489

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store