Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Các hình a, b và e là các hình lăng trụ đứng. HS tự giải thích.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lăng trụ đứng tam giác ABC.A'B'C'.
a) Hãy kể tên các đỉnh, các cạnh, các mặt đáy và mặt bên của hình lăng trụ đứng.
b) Nêu vị trí tương đối của AB và CC'; AC và A'B'; (ABB'A') và (BCC'B').
Câu 3:
Một hình lăng trụ đứng có đáv là đa giác n cạnh. Hãy tính:
a) Số đỉnh của hình lăng trụ;
b) Số cạnh của hình lăng trụ;
c) Số mặt của hình lăng trụ
Câu 4:
Cho hình lăng trụ đứng tam giác ABC.A'B'C. Dựng hình bình hành ABDC và A'C'D'B'.
a) Xét hình lăng trụ đứng ABDC.A'B'D'C'
i) Có bao nhiêu đỉnh, bao nhiêu cạnh, bao nhiêu mặt?
ii) Có là hình hộp chữ nhật không? Vì sao?
b) Trong các cặp mặt phẳng (ADD'A') và (BCC'B'); (ACC'A') và (BDD'B'); (BCC'B') và (ABDC); cặp mặt phẳng nào vuông góc với nhau? Vì sao?
Câu 5:
Cho hình lăng trụ đứng ABCD.MNPQ có đường cao bằng 7 cm; đáy MNPQ là hình chữ nhật tâm o và độ dài các cạnh AB = 3 cm, AC = 5 cm. Hãy tính:
a) Độ dài các đoạn thẳng AP và AO;
b) Tổng diện tích hai mặt đáy của hình lăng trụ đứng
Câu 6:
Cho hình lăng trụ đứng ABCD.A'B'C'D' có hai đáy là các hình vuông tâm O và tâm O', AB = 5 cm và AC ’ = 15 cm.
a) Hình lăng trụ đứng đã cho có phải hình lập phương không? Vì sao?
b) Chứng minh đường thẳng OO' vuông góc vói mặt phẳng (ABCD).
c) Tìm giao tuyến của hai mặt phẳng (ACC'A') và (BDD'B’).
d) Tính chiều cao của hình lăng trụ đứng
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
Đề kiểm tra Cuối kì 1 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
về câu hỏi!