Câu hỏi:

13/07/2024 1,502 Lưu

Cho tam giác nhọn ABC nội tiếp đường tròn (O). M, N là hai điểm thuộc cung nhỏ AC sao cho MN song song với AC và tia BM nằm giữa hai tia BA, BN. BM giao AC tại P. Gọi Q là một điểm thuộc cung BCnhỏ  sao cho PQ vuông góc với BC. QN giao AC tại R

2) Chứng minh rằng BR vuông góc với AQ

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2) Gọi PQ giao BC tại D, AQ giao BR tại E ta có các biến đổi góc sau

EQD^=DQB^AQB^=PRB^ACB^=RBC^=EBD^.

Vậy tứ giác BEDQ nội tiếp, suy ra BEQ^=BDQ^=900BRAQ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra APD^=900 ,

AHE^=900 (do HEBCHA), nên tứ giác APEH nội tiếp.

Ta có APH^=AEH^  (góc nội tiếp)

=ACB^HEBC=APB^ (góc nội tiếp)

PHPB

2). Ta có HPACAEH^=AHP^=AEP^ 

Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF

Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF

Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF

3). Do I là tâm nội tiếp nên EI là tia phân giác trong.

Mà EA là tia phân giác ngoài, suy ra EIACEIHB

Tương tự FIHC; EFBCΔIEF vàΔHBC có cạnh tương ứng song song, nên BE; CF và IH đồng quy.

Lời giải

2) Từ AD là phân giác BAC^ suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1) ΔBDMΔBCF, ta có DMCF=BDBC.

Vậy ta có biến đổi sau

 DACF=2DMCF=2BDBC=CDCN=DECE (3).

 

Ta lại có góc nội tiếp ADE^=FCE^ (4).

Từ 3 và 4 ta có:

ΔEADΔEFCEFC^=EAD^=90°EFAC 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP