Câu hỏi:

11/07/2024 10,212

Cho hình thang vuông ABCD AB //CD,A^=D^=90 có AD =  CD = 2AB. Gọi E là điểm đối xứng của A qua B.

a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.

b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.

c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI2=ND.NV .

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.

E là điểm đối xứng với A qua B nên B là trung điểm của AE. Do đó, AE = 2AB.

Theo đề bài ta có: AD = CD = 2AB

=> AD = CD = AE.

ABCD là hình thang vuông nên ta có: AB // CDA^=D^=90

Xét tứ giác AECD ta có:

AE // CD

AE = CD

=> Tứ giác AECD là hình bình hành (dấu hiệu nhận biết).

Mà ta lại có: AD = AE (chứng minh trên)

=> Tứ giác AECD là hình thoi (dấu hiệu nhận biết)

Theo giả thiết: A^=D^=90o

Suy ra, tứ giác AECD là hình vuông (dấu hiệu nhận biết)

b) Gọi M là trung điểm của ECI là giao điểm của BCDM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.

Vì tứ giác AECD là hình vuông nên AE = CE = CD = DA (định nghĩa hình vuông)

M là trung điểm của EC nên EM = CM =CE2.

BE=AE2 AE = CE (chứng minh trên).

=> BE = CM

Ta có: SBEC=12.BE.CESDCM=12.CM.DCSBEC=SDCM

SBEMI+SCMI=SDCI+SCMI

SBEMI=SDCI (đpcm)

c) Biết DACB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI2=ND.NV.

Xét tam giác BEC và tam giác MCD ta có:

BE = MC (cmt)

BEC^=MCD^=90

EC = CE (cmt)

ΔBEC=ΔMCD (c-g-c)

BCE^=MDC^ (hai góc tương ứng)

Ta có: BCE^+BCD¯=90MDC^+BCD^=90

Xét tam giác DIC ta có: IDC^+DCI^=90DIC^=90 (áp dụng định lý tổng ba góc trong một tam giác)

=> DI vuông góc với BC tại I.

Xét tam giác DNI vuông tại N, áp dụng định lý Py-ta-go ta có:

ID2=IN2+ND2ND2=ID2IN2       

Xét tam giác VNI vuông tại N, áp dụng định lý Py-ta-go ta có:

IV2=IN2+NV2NV2=IV2IN2 

Xét tam giác DVI vuông tại I, áp dụng định lý Py-ta-go ta có:

ID2+IV2=DV2

ID2+IV2=VN+ND2

ID2+IV2=VN2+2VN.ND+ND2

ID2+IV2=IV2IN2+2VN.ND+ID2IN2

2IN2=2VN.ND

IN2=VN.ND.

Vậy NI2=ND.NV.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình bình hành ABCD có góc A bằng 2 lần góc B. Số đo góc D là

Xem đáp án » 11/07/2024 17,868

Câu 2:

Tìm giá trị nhỏ nhất của biểu thức Q=2x2+2x+12

Xem đáp án » 11/07/2024 11,694

Câu 3:

2 khu dân cư AB cùng nằm bên bờ sông MN (như hình vẽ). Người ta muốn xây dựng một trạm cấp nước  trên bờ sông MN để cung cấp cho hai khu dân cư nói trên. Gọi C là địa điểm đặt trạm. Hãy xác định vị trí của C trên bờ sông MN để tổng độ dài đường ống dẫn nước từ đó tới hai khu dân cư AB là ngắn nhất (giả thiết các đường ống dẫn nước là đường thẳng AC, BC).

Xem đáp án » 11/07/2024 8,773

Câu 4:

Kết quả của phép tính 5x+23xy2:10x+4x2y

Xem đáp án » 11/07/2024 8,350

Câu 5:

Cho hình bình hành ABCD có góc A là góc tù. Kẻ AHCK vuông góc với đường chéo BD.

a) Chứng minh rằng: Tứ giác AHCK là hình bình hành.

b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng.

c) Tính diện tích hình bình hành AHCK. Biết AH = 4cm, HK = 2cm.

Xem đáp án » 11/07/2024 8,227

Câu 6:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC. Gọi I là giao điểm của ABDH, K là giao điểm của ACEH.

a) Tứ giác AIHK là hình gì? Vì sao?

b) Chứng minh ba điểm D, A, E thẳng hàng;

c) Gọi M là trung điểm của BC. Chứng minh AMIK .

Xem đáp án » 11/07/2024 6,725

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL