Câu hỏi:
12/07/2024 5,498Cho có AB = AC; D là điểm bất kì trên cạnh AB. Tia phân giác của góc A cắt cạnh DC ở M, cắt cạnh BC ở I.
a) Chứng minh CM = BM.
b) Chứng minh AI là đường trung trực của đoạn thẳng BC.
c) Từ D kẻ DH ⊥ BC (H ∈ BC). Chứng minh .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ΔABM và ΔACM có:
AB = AC (gt)
(AI là tia phân giác của góc BAC)
AM cạnh chung
Do đó ΔABM = ΔACM (c.g.c).
Suy ra BM = CM (hai cạnh tương ứng)
b) Xét ΔABI và ΔACI có:
AB = AC (gt)
(AI là tia phân giác của góc BAC)
AI là cạnh chung.
Do đó ΔABI = ΔACI (c.g.c).
Suy ra BI = CI (hai cạnh tương ứng). (1)
và (hai góc tương ứng).
+ Mà (Vì là hai góc kề bù).
Nên suy ra AI ⊥ BC tại I. (2)
Từ (1) và (2) suy ra AI là đường trung trực của đoạn thẳng BC.
c)
+ Ta có: DH ⊥ BC (GT).
AI ⊥ BC(chứng minh trên)
Suy ra DH // AI (quan hệ giữa tính vuông góc với tính song song)
( vì là hai góc đồng vị ). (3)
+ Ta lại có: (vì AI là tia phân giác của ).(4)
Từ (3) và (4) suy ra
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho ΔABC = ΔMNP. Biết AB = 10 cm, MP = 8 cm, NP = 7 cm. Chu vi của ΔABC là:
về câu hỏi!