Câu hỏi:
12/07/2024 3,227Cho tam giác ABC có ba góc nhọn, M là một điểm bất kì nằm trên cạnh BC. Gọi E, F theo thứ tự là hình chiếu của M lên AB, AC. Tìm vị trí của M để EF có độ dài nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chú ý đến hai tam giac vuông chung cạnh huyền là AEM, AFM, ta gọi I là trung điểm của AM, ta có IA = IE = IM = IF.
Như vậy EF là cạnh đáy tam giác cân IEF. Dễ thấy mà không đổi nên không đổi.
Tam giác cân EIF có số đo góc ở đỉnh không đổi nên cạnh đáy nhỏ nhất khi và chỉ khi cạnh bên nhỏ nhất.
Do đó EF nhỏ nhất <=> IE nhỏ nhất <=> AM nhỏ nhất. Khi đó M là chân đường vuông góc kẻ từ A đến BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông cân tại A. Điểm M thuộc cạnh BC, gọi E và F theo thứ tự là hình chiếu của M trên AB và AC. Chứng minh rằng khi M chuyển động trên cạnh BC thì:
1. Chu vi tứ giác MEAF không đổi
2. Đường thẳng đi qua M và vuông góc với EF luôn luôn đi qua một điểm K cố định.
3. Tam giác KEF có diện tích nhỏ nhất khi M là trung điểm của BC.
Câu 2:
Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh BC, điểm F thuộc cạnh AD sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N.
1. Chứng minh
2. Gọi K là giao điểm của NA và MB. Chứng minh .
Câu 3:
Trong các hình chữ nhật có cùng chu vi, hình nào có diện tích lớn nhất?
Câu 4:
Cho tam giác ABC. Tìm điểm M thuộc miền trong hoặc nằm trên cạnh của tam giác sao cho tổng các khoảng cách từ M đến ba cạnh của tam giác có giá trị nhỏ nhất.
Câu 5:
Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M lên AC, AB. Tìm vị trí của M để DE có độ dài nhỏ nhất.
Câu 6:
Chứng minh rằng trong các tam giác vuông có cạnh huyền không đổi, tam giác vuông cân có chu vi lớn nhất.
Câu 7:
Cho tam giác ABC có BC = a, AC = b, AB = c. Tìm điểm M nằm trong tam giác sao cho có giá trị nhỏ nhất, trong đó x, y, z theo thứ tự là khoảng cách từ điểm M đến các cạnh BC, AC, AB
về câu hỏi!