Câu hỏi:

11/07/2024 1,448

Trong các hình bình hành có diện tích và một đường chéo không đổi, hình nào có chu vi nhỏ nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét các hình bình hành ABCD có BD cố định. Diện tích hình bình hành không đổi

nên diện tích tam giác ABD không đổi, do đó A chuyển động trên đường thẳng

d // BD.

Cần xác định vị trí của A trên d để BA + AD nhỏ nhất. Ta đổi phía của BA đối với d bằng cách lấy B’ đối xứng với B qua d. Khi đó B’ cố định

Khi đó AB = AD

Vậy hình bình hành có chu vi nhỏ nhất khi nó là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a, b thứ tự là chiều dài và chiều rộng của hình chữ nhật

Hình chữ nhật có chu vi không đổi <=> a+b=p không đổi.

Theo (*), diện tích hình chữ nhật là S = ab lớn nhất bằng

Khi đó, hình chữ nhật trở thành hình vuông.

Vậy trong các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.

Lời giải

Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh BC, điểm F thuộc (ảnh 1)

1. Vì ABCD là hình vuông nên AB // CD, AD = BC

Suy ra CMAB=CEBE  và AFFD=BADN

Ta có: AD = AF + FD, BC = BE + EC

Mà AD = BC, AF = CE

Nên FD = BE

Suy ra FAFD=CEBE

Do đó CMAB=ABDN

Hay CM . DN = AB2 = a2

2. Ta có  CMAB=ABDN nên CMCB=ADDN  (vì AB = AD = BD)

Xét ∆CMB và ∆DAN có

CMCB=ADDN

MCB^=ADN^=90°

Suy ra ΔCMBΔDAN  (c.g.c)

Do đó CMB^=DAN^

Suy ra CMB^+DAN^=90°

Hay MKN^=90° .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP