Câu hỏi:
18/01/2021 1,603Cho hình chữ nhật ABCD có diện tích S. Tìm diện tích nhỏ nhất của các tứ giác EFGH có bốn đỉnh lần lượt thuộc bốn cạnh AB, BC, CD, DA của hình chữ nhật và
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông cân tại A. Điểm M thuộc cạnh BC, gọi E và F theo thứ tự là hình chiếu của M trên AB và AC. Chứng minh rằng khi M chuyển động trên cạnh BC thì:
1. Chu vi tứ giác MEAF không đổi
2. Đường thẳng đi qua M và vuông góc với EF luôn luôn đi qua một điểm K cố định.
3. Tam giác KEF có diện tích nhỏ nhất khi M là trung điểm của BC.
Câu 2:
Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh BC, điểm F thuộc cạnh AD sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N.
1. Chứng minh
2. Gọi K là giao điểm của NA và MB. Chứng minh .
Câu 3:
Trong các hình chữ nhật có cùng chu vi, hình nào có diện tích lớn nhất?
Câu 4:
Cho tam giác ABC. Tìm điểm M thuộc miền trong hoặc nằm trên cạnh của tam giác sao cho tổng các khoảng cách từ M đến ba cạnh của tam giác có giá trị nhỏ nhất.
Câu 5:
Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M lên AC, AB. Tìm vị trí của M để DE có độ dài nhỏ nhất.
Câu 6:
Chứng minh rằng trong các tam giác vuông có cạnh huyền không đổi, tam giác vuông cân có chu vi lớn nhất.
Câu 7:
Cho tam giác ABC có BC = a, AC = b, AB = c. Tìm điểm M nằm trong tam giác sao cho có giá trị nhỏ nhất, trong đó x, y, z theo thứ tự là khoảng cách từ điểm M đến các cạnh BC, AC, AB
về câu hỏi!