Câu hỏi:

13/07/2024 1,164 Lưu

Cho tam giác ABC. Qua một điểm bất kì thuộc cạnh BC, vẽ các đường thẳng song song với hai cạnh kia tạo với hai cạnh ấy một hình bình hành. Tìm vị trí của điểm m để hình bình hành có diện tích lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

S3 lớn nhất khi xy lớn nhất. các số xy có tổng bằng a không đổi nên tích của chúng lớn nhất khi và chỉ khi x = y. khi đó M là trung điểm của BC và diện tích hình bình hành ADME bằng nửa diện tích của tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a, b thứ tự là chiều dài và chiều rộng của hình chữ nhật

Hình chữ nhật có chu vi không đổi <=> a+b=p không đổi.

Theo (*), diện tích hình chữ nhật là S = ab lớn nhất bằng

Khi đó, hình chữ nhật trở thành hình vuông.

Vậy trong các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.

Lời giải

Cho hình vuông ABCD cạnh a, điểm E thuộc cạnh BC, điểm F thuộc (ảnh 1)

1. Vì ABCD là hình vuông nên AB // CD, AD = BC

Suy ra CMAB=CEBE  và AFFD=BADN

Ta có: AD = AF + FD, BC = BE + EC

Mà AD = BC, AF = CE

Nên FD = BE

Suy ra FAFD=CEBE

Do đó CMAB=ABDN

Hay CM . DN = AB2 = a2

2. Ta có  CMAB=ABDN nên CMCB=ADDN  (vì AB = AD = BD)

Xét ∆CMB và ∆DAN có

CMCB=ADDN

MCB^=ADN^=90°

Suy ra ΔCMBΔDAN  (c.g.c)

Do đó CMB^=DAN^

Suy ra CMB^+DAN^=90°

Hay MKN^=90° .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP