Câu hỏi:
13/07/2024 712Cho năm điểm trên mặt phẳng trong đó không có ba điểm nào thẳng hàng. Chứng minh rằng bao giờ cùng có thể chọn được bốn điểm là đỉnh của một tứ giác lồi.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét bốn điểm A, B, C, D. Nếu bốn điểm đó là đỉnh của một tứ giác lồi thì bài toán được chứng minh xong. Nếu bốn điểm đó không là đỉnh của một tứ giác lồi thì tồn tại một điểm (giả sử D) nằm trong tam giác có đỉnh là ba điểm còn lại. Chia mặt phẳng thành chín như hình vẽ, điểm thứ năm E nằm bên trong một miền (vì trong năm điểm không có ba điểm thẳng hàng).
Nếu E thuộc các miền 1, 4, 8, ta chọn bốn điểm là E và A, D, B. Nếu E thuộc các miền 2, 5, 7, ta chọn E và A, D, C.
Nếu E thuộc các miền 3, 6, 9 ta chọn E và B, D, C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tứ giác ABCD có CB=CD. Chứng minh rằng AC là tia phân giác của giác A
Câu 2:
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB và AC theo thứ tự ở E và F.
a) Trên tia đối của tia HC, lấy điểm D sao cho HD=HC. Chứng minh rằng E là trực tâm của tam giác DBH.
b) Chứng minh rằng HE=HF.
Câu 3:
Hình thang ABCD (AB//CD) có E là trung điểm của BC,
Chứng minh rằng DE là tia phân giác của góc D.
Câu 4:
Một hình thang cân có đường cao bằng nửa tổng hai đáy. Tính góc tạo bởi hai đường chéo hình thang.
Câu 5:
Tứ giác ABCD có AB=CD. Chứng minh rằng đường thẳng đi qua trung điểm của hai đường chéo tạo với AB và CD các góc bằng nhau.
Câu 6:
Tứ giác ABCD có O là giao điểm của hai đường chéo, AB=6, OA=8, OB=4, OD=6. Tính độ dài AD.
Câu 7:
Cho tam giác ABC, trọng tâm G.
a) Vẽ đường thẳng d qua G, cắt các đoạn thẳng AB, AC. Gọi A', B', C' là hình chiếu của A, B, C trên d. Tìm liên hệ giữa các độ dài AA', BB', CC'
b) Nếu đường thẳng d nằm ngoài tam giác ABC và G' là hình chiếu của G trên d thì các độ dài AA', BB', CC', GG' có liên hệ gì?
về câu hỏi!