Câu hỏi:
13/07/2024 1,594Một hình bình hành có bốn đỉnh nằm trên bốn cạnh của một hình bình hành khác. Chứng minh rằng các tâm của hai hình bình hành đó trùng nhau.
Câu hỏi trong đề: Ôn tập Tứ giác có đáp án !!
Quảng cáo
Trả lời:
Gọi EFGH là hình bình hành có bốn đỉnh nằm trên bốn cạnh của hình bình hành ABCD. Gọi O là tâm của hình bình hành EFGH, ta sẽ chứng minh O cũng là tâm của hình bình hành ABCD.
Gọi P, Q theo thứ tự là trung điểm của AD, BC. Ta có OP là đường trung bình của hình thang AEGD nên OP//DG. Tương tự, OQ//GC. Suy ra P, O, Q thẳng hàng.
Chứng minh tương tự, O thuộc đường trung bình RS của hình bình hành ABCD. Do AR//OQ và AR=OQ nên ARQO là hình bình hành. Suy ra AO//RG, AO=RQ. Tương tự, OC//RQ, OC=RQ. Từ đó suy ra O là trung điểm của AC. Do đó, O là tâm của hình bình hành ABCD.
Vậy các tâm của hai hình bình hành EFGH, ABCD trùng nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 287
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC, cắt các đường thẳng AB, AC ở E, F. Vẽ các hình chữ nhật BDEH và CDFK. Chứng minh rằng A là trung điểm của HK.
Câu 2:
Gọi H là hình chiếu của đỉnh B trên đường chéo AC của hình chữ nhật ABCD, M và K theo thứ tự là trung điểm của AH và CD.
a) Gọi I và O theo thứ tự là trung điểm của AB và IC. Chứng minh rằng .
b) Tính số đo góc BMK.
Câu 3:
Cho hình bình hành ABCD, các đường cao AE và AF. Biết AC=25cm, EF=24cm. Tính khoảng cách từ A đến trực tâm H của tam giác AEF.
Câu 4:
Cho tam giác đều ABC, điểm M thuộc cạnh BC, Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC. Vẽ hình bình hành MDNE. Chứng minh rằng AN song song với BC.
Câu 5:
Cho hình thang vuông ABCD có Qua điểm E thuộc cạnh AB kẻ đường vuông góc với DE, cắt BC tại F. Chứng minh rằng ED=EF.
Câu 6:
Cho tam giác đều ABC, một đường thẳng song song với BC cắt AB, AC ở D, E. Gọi G là trọng tâm của tam giác ADE, I là trung điểm của CD. Tính số đo các góc của tam giác GIB.
Câu 7:
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Trên cạnh AC lấy điểm E sao cho AE=AB. Gọi M là trung điểm của BE. Chứng minh rằng HM là tia phân giác của góc AHC.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận