Câu hỏi:
13/07/2024 1,219Tìm số nguyên x, biết:
a) (-300):20 + 5.(3x – 1) = 25;
b) (5.13)x = 25.(53 + 4.11)2 : (34 – 35:33 + 97) (x 0);
c) (x – 5)(3x – 6) = 0;
d) (2x + 1)2.(x – 6) > 0;
e) (x + 1).(x – 4) < 0.
Câu hỏi trong đề: Giải SBT Toán 6 Chương 2: Số nguyên - Bộ Cánh diều !!
Quảng cáo
Trả lời:
a) (-300):20 + 5.(3x – 1) = 25
(-15) + 5.(3x – 1) = 25
5.(3x – 1) = 25 – (-15)
5.(3x – 1) = 40
3x – 1 = 8
3x = 9
x = 3.
Vậy x = 3.
b) (5.13)x = 25.(53 + 4.11)2 : (34 – 35:33 + 97) (x 0)
65x = 25.(125 + 44)2 : (81 – 32 + 97)
65x = 25.1692 : (81 – 9 + 97)
65x = 25.1692 : 169
65x = 25.169
65x = 52.132
65x = (5.13)2
65x = (65)2
x = 2 (thỏa mãn điều kiện)
Vậy x = 2.
c) (x – 5)(3x – 6) = 0
TH1: x – 5 = 0
x = 5.
TH2: 3x – 6 = 0
3x = 6
x = 2.
Vậy x = 5 hoặc x = 2.
d) (2x + 1)2.(x – 6) > 0
Vì x là số nguyên nên (2x + 1)2 > 0 nên để (2x + 1)2.(x – 6) > 0 thì x – 6 > 0 khi x > 6.
Vậy x ∈ {7; 8; 9; …}.
e) (x + 1).(x – 4) < 0.
Ta có x + 1 > x – 4
Mà x + 1 và x – 4 trái dấu
Nên x + 1 > 0 và x – 4 < 0
Suy ra x > - 1 và x < 4
Hay – 1 < x < 4.
Do x là số nguyên nên x ∈ {0; 1; 2; 3}.
Vậy x ∈ {0; 1; 2; 3}.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
+) Nếu n chẵn thì n chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.
Nếu n lẻ thì n + 1 chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.
Suy ra n(n + 1)(n + 2) chia hết cho 2 với mọi số nguyên n.
+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2) chia hết cho 3.
Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.
Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.
Suy ra n(n + 1)(n + 2) chia hết cho 3 với mọi số nguyên n.
Vậy n(n + 1)(n + 2) chia hết cho 2 và 3 với mọi số nguyên n.
b)
+) Nếu n chẵn thì n chia hết cho 2 thì n + 2 chia hết cho 4 nên n(n + 1)(n + 2)(n + 3) chia hết cho 8.
Nếu n lẻ thì n + 1 chia hết cho 2 thì n + 3 chia hết cho 4 nên n(n + 1)(n + 2)(n +3) chia hết cho 8.
Suy ra n(n + 1)(n + 2)(n +3) chia hết cho 8 với mọi số nguyên n.
+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Suy ra n(n + 1)(n + 2)(n + 3) chia hết cho 3 với mọi số nguyên n.
Vậy n(n + 1)(n + 2)(n + 3) chia hết cho 2 và 3 với mọi số nguyên n.
Lời giải
a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.
Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.
Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.
Suy ra x thuộc {2; 0; 3; -1}.
Vậy x ∈ {2; 0; 3; -1}.
b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1
Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1
Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.
Suy ra x thuộc {0; -1}.
Vậy x ∈ {0; -1}.
c)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.
Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
d)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.
Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.