Tính một cách hợp lí:
a) (2 021 – 39) + [(-21) + (-61)];
b) (-625) – {(-547) – 352 – [(-147) – (-735) + (2 200 + 65)]};
c) (-16).125.[(-3).22].53 – 2.106;
d) (134 – 34).(-28) + 72.[(-55) – 45].
Câu hỏi trong đề: Giải SBT Toán 6 Chương 2: Số nguyên - Bộ Cánh diều !!
Quảng cáo
Trả lời:
a) (2 021 – 39) + [(-21) + (-61)]
= 2 021 + (-39) + (-21) + (-61)
= [2 021 + (-21)] + [(-39) + (-61)]
= 2 000 + (-100)
= 2 000 – 100
= 1 900.
b) (-652) – {(-547) – 352 – [(-147) – (-735) + (2 200 + 65)]}
= (-652) – {(-547) – 352 – [(-147) + 735 + 2 200 + 65]}
= (-652) – {(-547) – 352 – [(-147) + (735 + 65) + 2 200]}
= (-652) – {(-547) – 352 – [(-147) + 800 + 2 200]}
= (-652) – {(-547) – 352 – [(-147) + 3 000]}
= (-652) – {(-547) – 352 + 147 - 3 000}
= (-652) – {[(-547) +147] + [(-352) + (- 3 000)]}
= (-652) – {(-400) + (- 3 352)}
= (-652) – {(- 3 752)}
= (-652) + 3 752
= 3 100.
c) (-16).125.[(-3).22].53 – 2.106
= (-16).125.(-3).4.125 – 2.106
= (-2).8.125.(-3).4.125 – 2.106
= (-2).4.125.8.125.(-3) – 2.106
= (-1 000).1 000.(-3) – 2.106
= 3.106 – 2.106
= 106.(3 – 2)
= 106.
d) (134 – 34).(-28) + 72.[(-55) – 45]
= 100.(-28) + 72.(-100)
= 100(-28) + (-72).100
= 100.[(-28) + (-72)]
= 100.(-100)
= - 10 000.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
+) Nếu n chẵn thì n chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.
Nếu n lẻ thì n + 1 chia hết cho 2 nên n(n + 1)(n + 2) chia hết cho 2.
Suy ra n(n + 1)(n + 2) chia hết cho 2 với mọi số nguyên n.
+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2) chia hết cho 3.
Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.
Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2) chia hết cho 3.
Suy ra n(n + 1)(n + 2) chia hết cho 3 với mọi số nguyên n.
Vậy n(n + 1)(n + 2) chia hết cho 2 và 3 với mọi số nguyên n.
b)
+) Nếu n chẵn thì n chia hết cho 2 thì n + 2 chia hết cho 4 nên n(n + 1)(n + 2)(n + 3) chia hết cho 8.
Nếu n lẻ thì n + 1 chia hết cho 2 thì n + 3 chia hết cho 4 nên n(n + 1)(n + 2)(n +3) chia hết cho 8.
Suy ra n(n + 1)(n + 2)(n +3) chia hết cho 8 với mọi số nguyên n.
+) Nếu n chia hết cho 3 thì n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Nếu n chia cho 3 dư 1 thì n có dạng n = 3k + 1. Khi đó n + 2 = 3k + 3 = 3(k+1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Nếu n chia cho 3 dư 2 thì n có dạng n = 3k + 2. Khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3 nên n(n + 1)(n + 2)(n + 3) chia hết cho 3.
Suy ra n(n + 1)(n + 2)(n + 3) chia hết cho 3 với mọi số nguyên n.
Vậy n(n + 1)(n + 2)(n + 3) chia hết cho 2 và 3 với mọi số nguyên n.
Lời giải
a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.
Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.
Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.
Suy ra x thuộc {2; 0; 3; -1}.
Vậy x ∈ {2; 0; 3; -1}.
b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1
Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1
Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.
Suy ra x thuộc {0; -1}.
Vậy x ∈ {0; -1}.
c)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.
Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
d)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.
Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.