Câu hỏi:

13/07/2024 3,019

Tìm số nguyên x, biết:

a) 2x – 1 là bội của x – 3;

b) 2x + 1 là ước của 3x + 2;

c) (x – 4)(x + 2) + 6 không là bội của 9;

d) 9 không là ước của (x – 2)(x + 5) + 11

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.

Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.

Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.

Suy ra x thuộc {2; 0; 3; -1}.

Vậy x ∈ {2; 0; 3; -1}.

b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1

Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1

Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.

Suy ra x thuộc {0; -1}.

Vậy x ∈ {0; -1}.

c)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.

Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.

d)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.

Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng tỏ rằng với mọi số nguyên n:

a) n(n + 1)(n + 2) chia hết cho 2 và 3.

b) n(n + 1)(n + 2)(n + 3) chia hết cho 3 và 8.

Xem đáp án » 13/07/2024 3,105

Câu 2:

Tìm số nguyên x, sao cho: 

a) A = x2 + 2 021 đạt giá trị nhỏ nhất.

b) B = 2 022 – 20x20 – 22x22 đạt giá trị lớn nhất.

Xem đáp án » 13/07/2024 2,264

Câu 3:

Bạn Nam muốn điền các số 1; 2; 3; 4; 5; 6; 8; 9 vào bảng bên sao cho tổng các số ở mỗi hàng, mỗi cột và mỗi đường chéo bằng nhau. Tính tổng bốn số ở bốn ô được tô đậm.

Bài 65 trang 87 sách bài tập Toán lớp 6 Tập 1

Xem đáp án » 13/07/2024 2,030

Câu 4:

Tính A – B, biết rằng A là tích của các số nguyên âm chẵn có một chữ số và B là tổng của các số nguyên dương lẻ có hai chữ số.

Xem đáp án » 13/07/2024 1,589

Câu 5:

a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?

b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp.

Xem đáp án » 13/07/2024 1,559

Câu 6:

Tính một cách hợp lí:

a) (2 021 – 39) + [(-21) + (-61)];

b) (-625) – {(-547) – 352 – [(-147) – (-735) + (2 200 + 65)]};

c) (-16).125.[(-3).22].53 – 2.106;

d) (134 – 34).(-28) + 72.[(-55) – 45].

Xem đáp án » 13/07/2024 1,110

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL