Câu hỏi:

25/12/2021 244

Hoạt động khám phá 1 trang 36 Toán lớp 6 Tập 1:

a) Một nhóm học sinh gồm 12 bạn nam và 8 bạn nữ đi dã ngoại. Có bao nhiêu cách chia nhóm, mỗi nhóm từ 2 bạn trở lên sao cho số bạn nam ở mỗi nhóm bằng nhau, số bạn nữ ở mỗi nhóm cũng bằng nhau.

b) Viết các tập hợp Ư(18), Ư(30). Liệt kê các phần tử chung của tập hợp này.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) 

Để chia nhóm học sinh thành các nhóm khác nhau mà mỗi nhóm có số bạn nam bằng nhau, số bạn nữ bằng nhau thì số nhóm vừa phải là ước của 12, vừa phải là ước của 8.

Ta lấy 12 chia cho các số tự nhiên từ 1 đến 12, ta được Ư(12) = {1; 2; 3; 4; 6; 12}.

Ta lấy 8 chia cho các số tự nhiên từ 1 đến 8, ta được: Ư(8) = {1; 2; 4; 8}.

Vậy 12, 8 có cùng các ước là 1, 2, 4.

Do đó có 3 cách chia nhóm: 

Cách 1: Chia 1 nhóm gồm 12 nam và 8 nữ.

Cách 2: Chia 2 nhóm, mỗi nhóm 6 nam, 4 nữ.

Cách 3: Chia 4 nhóm, mỗi nhóm 3 nam, 2 nữ.

b) Ta lấy 18 chia cho các số tự nhiên từ 1 đến 18 ta thấy 18 chia hết cho các số 1; 2; 3; 6; 9; 18.

Khi đó Ư(18) = {1; 2; 3; 6; 9; 18}.

Ta lấy 30 chia cho các số tự nhiên từ 1 đến 30 ta thấy 30 chia hết cho các số 1; 2; 3; 5; 6; 10; 15; 30.

Do đó Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

Các phần tử chung của hai tập hợp này là 1; 2; 3; 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(36, 45) = {1; 3; 9}.

b) Ta có: Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(18, 36, 45) = {1; 3; 9}.

Lời giải

Lời giải:

a) Khẳng định a là sai vì:

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Suy ra ƯC(12, 24) = {1; 2; 3; 4; 6; 12}

Do đó 8 không phải là phần tử của tập ƯC(12, 24).

b) Khẳng định b là đúng vì:

Ta có:

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(48) = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}

Suy ra ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay