Câu hỏi:

09/03/2022 618

Một căn phòng hình chữ nhật dài 680cm, rộng  480cm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: 

Gọi chiều dài viên gạch là x.

Để lát kín căn phòng mà không có có viên gạch nào bị cắt xén thì x phải là ước của chiều dài và chiều rộng căn phòng 

Hay 680⋮x và 480⋮x

⇒ x∈ ƯC(680; 480)

Để x là lớn nhất ⇒ x = ƯCLN(680; 480)

Ta có: 

680 = 23.5.17; 

480 = 25.3.5

⇒ x = ƯCLN(680;480) = 23.5 = 40

Vậy để lát kín căn phòng mà không có viên gạch nào bị cắt xén thì độ dài cạnh viên gạch lớn nhất là 4040 cm.cm.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: 

Gọi số nhóm chia được là x (nhóm) 

Vì có 18 nam mà số nam ở mỗi nhóm bằng nhau nên 18⋮x

Vì có 24  nữ mà số nữ ở mỗi nhóm bằng nhau nên 24⋮x

⇒x∈ƯC(18;24)

Vì x  là lớn nhất nên x= ƯCLN(18;24)

Ta có: 18 = 2.32; 24 = 23.3

⇒ x = ƯCLN(18;24) = 2.3 = 6

Vậy chia được nhiều nhất là 6  nhóm .

Đáp án cần chọn là: D

Câu 2

Lời giải

Số hàng dọc nhiều nhất có thể xếp được là ước chung lớn nhất của 40; 48 và 32.

Ta có 

40 = 23.5; 

48 = 24.3; 32 = 25.

ƯCLN(40; 48; 32) = 23 = 8

Vậy số hàng dọc nhiều nhất mỗi lớp xếp được là 8 hàng.

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP