Câu hỏi:
14/04/2022 1,822Quảng cáo
Trả lời:
- Mệnh đề quan hệ ở dạng bị động
- Danh từ đằng trước mệnh đề quan hệ có từ “the last” (số thứ tự) bổ nghĩa
=>rút gọn mệnh đề quan hệ bằng động từ nguyên mẫu thành “to be Ved/V3”
The last student that was interviewed was Tom.
=>The last student to be interviewed was Tom.
Tạm dịch: Sinh viên cuối cùng được phỏng vấn là Tom.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Danh từ “poor people” (người nghèo) =>chỉ người
Sau chỗ cần điền là 1 động từ =>cần điền đại từ quan hệ “who” để thay thế cho chủ ngữ chỉ người.
=>There are too many poor people who do not have enough to eat in the world.
Tạm dịch: Có quá nhiều người nghèo không có đủ cái ăn trên thế giới.
Đáp án cần chọn là: C
Lời giải
Danh từ “party” (bữa tiệc) =>chỉ vật
Sau chỗ cần điền là 1 mệnh đề: S + V =>cần điền đại từ quan hệ “which” để thay thế cho vị trí là tân ngữ chỉ vật, trước chỗ trống có dấu phẩy nên không được dùng “that”
=>We went to Sandra’s party, which we enjoyed very much.
Tạm dịch: Chúng tôi đã đến bữa tiệc của Sandra, chúng tôi rất thích.
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận