Câu hỏi:

05/05/2022 357

Cho hàm số y = f(x) có đạo hàm trên R và có bảng biến thiên như sau:

Cho hàm số y = f(x) có đạohàm trên R và có bảng biến thiên như sau (ảnh 1)

Tổng các giá trị nguyên của tham số m để phương trình 2fx+4fx+log2f2x4fx+5=m  có đúng hai nghiệm phân biệt bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Dựa vào bảng biến thiên ta có: 1fx4, x

Xét gx=2fx+4fx+log2f2x4fx+5

g'x=fx+4fx'2fx+4fx.ln2+f2x4fx+5'f2x4fx+5.ln2=f'x14f2x2fx+4fx.ln2+f'x.2fx4f2x4fx+5.ln2=f'xfx2fx+2f2x2fx+4fx.ln2+2f2x4fx+5.ln2

Khi đó g'x=0f'x=0fx=2x=1,x=2,x=3x=α1;2;x=β2;3

Ta có bảng biến thiên

Cho hàm số y = f(x) có đạohàm trên R và có bảng biến thiên như sau (ảnh 2)

Dựa vào bảng biến thiên ta có yêu cầu đề bài 33<m<34,3m=16 mà m nên m16;34.

Vậy tổng các giá trị nguyên của tham số m là 50.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD biết A(1; 0; 1), B(1; 0 -3), (ảnh 1)

Ta có AB=0;0;4=40;0;1. Hay AB có vectơ chỉ phương k=0;0;1.

Mặt phẳng (ABCD) có một vectơ pháp tuyến OA;OB=0;4;0=40;1;0, hay j=0;1;0 là một vectơ pháp tuyến của mặt phẳng (ABCD).

ADABADABCD nên ADkADj.

Đường thẳng AD có vectơ chỉ phương là j;k=1;0;0.

Phương trình đường thẳng AD là: x=1+ty=0z=1. Do đó D1+t;0;1.

Mặt khác AD=ABt2+02+112=4t=4t=4.

Vì điểm D có hoành độ âm nên D(-3; 0; 1).

Vì tâm I của hình vuông ABCD là trung điểm BD nên I = (-1; 0; -1).

Đường thẳng d là trục đường tròn ngoại tiếp hình vuông ABCD có vectơ pháp tuyến là j=0;1;0, nên phương trình đường thẳng d là: d:x=1y=tz=1.

Lời giải

Đáp án D

Để hàm số có đạo hàm tại x = 2 thì hàm số phải liên tục tại x = 2.

Do đó limx2x3x28x+10=limx2+x2+ax+b2=4+2a+b2a+b=6.

Hàm số có đạo hàm tại điểm x = 2 nên

limx2fxf2x2=limx2+fxf2x2limx2x3x28x+102x2=limx2+x2+ax+b4+2a+bx2limx2x2+x6=limx2+x+2+a4+a=0a=4

Suy ra b = 2. Vậy ab = -8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay