Câu hỏi:
17/05/2022 351
Hai điểm M và N cách nhau 21 cm trên mặt chất lỏng là hai nguồn phát sóng đồng bộ có tần số dao động là 50 Hz, tốc độ truyền sóng trên mặt chất lỏng là 1m/s. Trên khoảng MN số điểm dao động với biên độ cực đại là
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng biểu thức tính bước sóng:
+ Sử dụng biểu thức tính số cực đại trên đường thẳng nối 2 nguồn cùng pha: \[ - \frac{L}{\lambda } < k < \frac{L}{\lambda }\]
Cách giải:
+ Bước sóng:
+ Số điểm dao động với biên độ cực đại trên MN bằng số giá trị k nguyên thỏa mãn:
Có 21 giá trị của k nguyên thỏa mãn. Vậy có 21 điểm
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng biểu thức tính dung kháng: \[{Z_C} = \frac{1}{{\omega C}}\]
Cách giải:
Dung kháng của tụ điện: \[{Z_C} = \frac{1}{{\omega C}}\]
Chọn C.Lời giải
Phương pháp:
+ Vận dụng biểu thức tính cảm kháng và dung kháng: \[\left\{ {\begin{array}{*{20}{l}}{{Z_L} = \omega L}\\{{Z_C} = \frac{1}{{\omega C}}}\end{array}} \right.\]
+ Sử dụng biểu thức tính hệ số công suất:
Cách giải:
+ Khi \[f = {f_2} = 50Hz:\cos {\varphi _2} = 1 \Rightarrow {Z_{{L_2}}} = {Z_{{C_2}}} \Leftrightarrow \frac{1}{{LC}} = \omega _2^2\]
+ Khi \[f = {f_1} = 25Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_1}}} = \frac{{{\omega _1}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{{Z_{{L_2}}}}}{2}}\\{{Z_{{C_1}}} = \frac{{{\omega _2}}}{{{\omega _1}}}{Z_{{C_2}}} = 2{Z_{{C_2}}} = 2{Z_{{L_2}}}}\end{array}} \right.\]
\[ \Rightarrow \cos {\varphi _1} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_1}}} - {Z_{{C_1}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{{Z_{{L_2}}}}}{2} - 2{Z_{{L_2}}}} \right)} }} = \frac{{\sqrt 2 }}{2}\] \[ \Rightarrow 2{R^2} = {R^2} + \frac{9}{4}Z_{{L_2}}^2 \Rightarrow {Z_{{L_2}}} = \frac{2}{3}R\]
+ Khi \[f = {f_3} = 75Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_3}}} = \frac{{{\omega _3}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{3{Z_{{L_2}}}}}{2}}\\{{Z_{{C_3}}} = \frac{{{\omega _2}}}{{{\omega _3}}}{Z_{{C_2}}} = \frac{2}{3}{Z_{{C_2}}} = \frac{2}{3}{Z_{{L_2}}}}\end{array}} \right.\]
\[ \Rightarrow \cos {\varphi _3} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_3}}} - {Z_{{C_3}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{3{Z_{{L_2}}}}}{2} - \frac{2}{3}{Z_{{L_2}}}} \right)} }} = 0,874\] Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.