Câu hỏi:

17/05/2022 828

Cho mạch điện xoay chiều theo thứ tự tụ điện có điện dung C, điện trở R và cuộn dây thuần cảm có độ tử cảm L mắc nối tiếp. Đặt vào hai đầu mạch điện áp xoay chiều ổn định có dạng \[u = U\sqrt 2 \cos (\omega t)(V).\] Gọi \[{U_{RL}}\] là điện áp hiệu dụng ở hai đầu cuộn cảm L và biến trở R, UC là điện áp hiệu dụng ở hai đầu cuộn cảm L. Đồ thị biểu diễn sự phụ thuộc của \[{U_{RL}},{U_C},{U_L}\] theo giá trị của R như trên hình vẽ. Khi R = 3R0 thì độ lệch pha giữa hiệu điện thế hai đầu mạch và cường độ dòng điện là φ (rad). Giá trị φ gần nhất với giá trị nào sau đây?
Cho mạch điện xoay chiều theo thứ tự tụ điện có điện dung C, điện trở R và cuộn dây thuần cảm có độ tử cảm L mắc nối tiếp. Đặt vào hai đầu mạch điện (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

+ Đọc đồ thị 

+ Sử dụng biểu thức của bài toán R thay đổi để \[{U_{RL}}\] không đổi khi đó: \[\left\{ {\begin{array}{*{20}{l}}{{U_{RL}} = U}\\{{Z_C} = 2{Z_L}}\end{array}} \right.\]

Cách giải: 

Từ đồ thị, ta nhận xét: đường (2) là \[{U_{RL}} = h{\rm{/}}s\]

R thay đổi để \[{U_{RL}}\]không đổi khi đó: \[\left\{ {\begin{array}{*{20}{l}}{{U_{RL}} = U}\\{{Z_C} = 2{Z_L}}\end{array}} \right.\]

Khi đó, đường (1) là \[{U_C},\]đường (2) là \[{U_L}\]

+ Tại giá trị \[R = {R_0}\] thì: \[{U_C} = {U_{RL}} = U \Leftrightarrow \frac{U}{{\sqrt {R_0^2 + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} \cdot {Z_C} = U\]

+ Tại \[R = 3{R_0} = 3\sqrt 3 {Z_L}\]  

Khi đó, độ lệch pha giữa u và i: tanφ =ZL-ZCR=ZL-2ZL33ZLφ = -0,19rad

Chọn D. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Sử dụng biểu thức tính dung kháng: \[{Z_C} = \frac{1}{{\omega C}}\]

Cách giải: 

Dung kháng của tụ điện: \[{Z_C} = \frac{1}{{\omega C}}\]

Chọn C.

Lời giải

Phương pháp: 

+ Vận dụng biểu thức tính cảm kháng và dung kháng: \[\left\{ {\begin{array}{*{20}{l}}{{Z_L} = \omega L}\\{{Z_C} = \frac{1}{{\omega C}}}\end{array}} \right.\]

+ Sử dụng biểu thức tính hệ số công suất: cosφ =RZ

Cách giải: 

+ Khi \[f = {f_2} = 50Hz:\cos {\varphi _2} = 1 \Rightarrow {Z_{{L_2}}} = {Z_{{C_2}}} \Leftrightarrow \frac{1}{{LC}} = \omega _2^2\]

+ Khi \[f = {f_1} = 25Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_1}}} = \frac{{{\omega _1}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{{Z_{{L_2}}}}}{2}}\\{{Z_{{C_1}}} = \frac{{{\omega _2}}}{{{\omega _1}}}{Z_{{C_2}}} = 2{Z_{{C_2}}} = 2{Z_{{L_2}}}}\end{array}} \right.\]

\[ \Rightarrow \cos {\varphi _1} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_1}}} - {Z_{{C_1}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{{Z_{{L_2}}}}}{2} - 2{Z_{{L_2}}}} \right)} }} = \frac{{\sqrt 2 }}{2}\] \[ \Rightarrow 2{R^2} = {R^2} + \frac{9}{4}Z_{{L_2}}^2 \Rightarrow {Z_{{L_2}}} = \frac{2}{3}R\]  

+ Khi \[f = {f_3} = 75Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_3}}} = \frac{{{\omega _3}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{3{Z_{{L_2}}}}}{2}}\\{{Z_{{C_3}}} = \frac{{{\omega _2}}}{{{\omega _3}}}{Z_{{C_2}}} = \frac{2}{3}{Z_{{C_2}}} = \frac{2}{3}{Z_{{L_2}}}}\end{array}} \right.\]

\[ \Rightarrow \cos {\varphi _3} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_3}}} - {Z_{{C_3}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{3{Z_{{L_2}}}}}{2} - \frac{2}{3}{Z_{{L_2}}}} \right)} }} = 0,874\]  Chọn B. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP