Câu hỏi:

18/05/2022 334 Lưu

Hai dao động điều hoà cùng phương, cùng tần số có biên độ \[{A_1},{A_2}\]. Biên độ A của dao  động tổng hợp của hai dao động trên thỏa mãn điều kiện nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Biên độ của dao động tổng hợp: \({A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}\cos (\Delta \varphi )\)

Hai dao động cùng pha. \[A = {A_1} + {A_2}\]

Hai dao động ngược pha. \(A = \left| {{A_1} - {A_2}} \right|\)

Cách giải: 

Ta có:

A2=A12+A22+2A1A2cosΔφ Amax=A1+A2Amin=|A1-A2|

Biên độ dao động tổng hợp của 2 dao động thỏa mãn: \(\left| {{A_1} - {A_2}} \right| \le A \le {A_1} + {A_2}\)

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại 

Cách giải: 

Bảng thang sóng điện từ:  

Thứ tự giảm dần của tần số các sóng điện từ (ảnh 1)

\(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.

Chọn A. 

Lời giải

Phương pháp: 

+ Bước sóng: λ =vf

+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)

Cách giải: 

Thực hiện giao thoa trên bề mặt chất lỏng với hai nguồn kết hợp A, B cách nhau 30cm dao động theo phương thẳng đứng với cùng phương trình (ảnh 1) 

Phương trình dao động của hai nguồn: 

\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)

Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)

Bước sóng: λ =vf=2(cm)

Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)

Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)

Mà: d1=ACd2=CBd22-d12=(15λ)2(d2-d1)(d2+d1)=(15λ)2

Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại) 

Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)

Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.

Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)

225kλ >15λ k<15

Lập bảng tìm các giá trị của k thỏa mãn: 

k

9

225k

225 

75 

45 

25

Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)

d2-d1=9λd2+d1=2259λd2=17λd1=8λ=8.2=16cm

Chọn D. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP