Câu hỏi:

18/05/2022 1,178 Lưu

Khi đưa một con lắc đơn lên cao theo phương thẳng đứng (chiều dài dây treo không  đổi) thì chu kì dao động điều hoà của nó sẽ

A. giảm vì tần số dao động điều hoà của nó tỉ lệ nghịch với gia tốc trọng trường.
B. không đổi vì chu kì dao động điều hoà của con lắc không phụ thuộc vào gia tốc trọng trường.
C. giảm vì gia tốc trọng trường giảm theo độ cao.
D. tăng vì gia tốc trọng trường giảm theo độ cao.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp: 

Công thức tính chu kì của con lắc đơn: T=2π lg

Công thức tính gia tốc trọng trường. \(g = \frac{{GM}}{{{{(R + h)}^2}}}\)

Cách giải: 

Ta có: T=2π lg

Gia tốc trọng trường: \({g_h} = \frac{{GM}}{{{{(R + h)}^2}}}\)

 Khi đưa con lắc đơn lên cao theo phương thẳng đứng (chiều dài dây treo không đổi) h tăng   gh giảm  chu kỳ con lắc tăng. 

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.
B. Tia hồng ngoại, tia tử ngoại, ánh sáng nhìn thấy.
C. Ánh sáng nhìn thấy, tia tử ngoại, tia hồng ngoại.
D. Ánh sáng nhìn thấy, tia hồng ngoại, tia tử ngoại.

Lời giải

Phương pháp: 

Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại 

Cách giải: 

Bảng thang sóng điện từ:  

Thứ tự giảm dần của tần số các sóng điện từ (ảnh 1)

\(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.

Chọn A. 

Lời giải

Phương pháp: 

+ Bước sóng: λ =vf

+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)

Cách giải: 

Thực hiện giao thoa trên bề mặt chất lỏng với hai nguồn kết hợp A, B cách nhau 30cm dao động theo phương thẳng đứng với cùng phương trình (ảnh 1) 

Phương trình dao động của hai nguồn: 

\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)

Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)

Bước sóng: λ =vf=2(cm)

Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)

Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)

Mà: d1=ACd2=CBd22-d12=(15λ)2(d2-d1)(d2+d1)=(15λ)2

Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại) 

Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)

Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.

Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)

225kλ >15λ k<15

Lập bảng tìm các giá trị của k thỏa mãn: 

k

9

225k

225 

75 

45 

25

Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)

d2-d1=9λd2+d1=2259λd2=17λd1=8λ=8.2=16cm

Chọn D. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. tác dụng mạnh lên kính ảnh.
B. kích thích một số chất phát quang.
C. bị lệch khi đi qua một điện trường mạnh.
D. có bản chất là sóng điện từ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(k\lambda {\rm{ }}\)(với \(k = 0, \pm 1, \pm 2, \ldots )\).
B. \(\left( {k + \frac{1}{2}} \right)\frac{\lambda }{2}\) (với \(k = 0, \pm 1, \pm 2, \ldots )\).
C. \(\left( {k + \frac{1}{2}} \right)\lambda \) (với \(k = 0, \pm 1, \pm 2, \ldots )\).
D. \(k\frac{\lambda }{2}\) (với \(k = 0, \pm 1, \pm 2, \ldots )\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP