Một con lắc lò xo treo thẳng đứng gồm vật nặng có khối lượng m = 100g và lò xo khối lượng không đáng kể. Chọn gốc toạ độ ở vị trí cân bằng, chiều dương hướng lên. Biết con lắc lò xo dao động điều hoà theo phương trình: \(x = 4\cos \left( {10t - \frac{\pi }{3}} \right)(cm)\). Lấy \(g = 10\;{\rm{m}}/{{\rm{s}}^2}.\) Độ lớn lực đàn hồi tác dụng vào vật tại thời điểm vật đã đi quãng đường S = 10cm kể từ lúc t = 0 bằng bao nhiêu?
Quảng cáo
Trả lời:
Phương pháp:
Độ lớn lực đàn hồi: \({F_{dh}} = k \cdot \left( {l - {l_0}} \right) = k \cdot \Delta l\)
Độ biến dạng tại VTCB: \(\Delta l = \frac{{mg}}{k}\)
Tần số góc:
Cách giải:
Phương trình dao động:
Độ cứng của lò xo: \(k = m \cdot {\omega ^2} = {0,1.10^2} = 10\;{\rm{N}}/{\rm{m}}\)
Độ giãn của lò xo tại VTCB: \(\Delta l = \frac{g}{{{\omega ^2}}} = \frac{{10}}{{{{10}^2}}} = 0,1\;{\rm{m}} = 10\;{\rm{cm}}\)
Tại t = 0 vật có \(x = 2\;{\rm{cm}}\) chuyển động theo chiều dương. Khi đi được quãng đường \(S = 10\;{\rm{cm}}\) thì vật đến đúng ở vị trí biên âm. Độ lớn lực đàn hồi tác dụng vào vật tại thời điểm đó là:
\({F_{dh}} = k \cdot (\Delta l + A) = 10.(0,1 + 0,04) = 1,4N\)
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại
Cách giải:
Bảng thang sóng điện từ:

Có \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.
Chọn A.
Lời giải
Phương pháp:
+ Bước sóng:
+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)
Cách giải:
Phương trình dao động của hai nguồn:
\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)
Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)
Bước sóng:
Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)
Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)
Mà:
Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại)
Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)
Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.
Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)
Lập bảng tìm các giá trị của k thỏa mãn:
k |
1 |
3 |
5 |
9 |
225 |
75 |
45 |
25 |
Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.