Câu hỏi:

18/05/2022 621 Lưu

Trong môi trường đẳng hướng và không hấp thụ âm, trên mặt phẳng nằm ngang có 3  điểm O, M, N tạo thành tam giác vuông tại O, với \(OM = 80\;{\rm{m}},ON = 60\;{\rm{m}}.\) Đặt tại O một nguồn điểm phát  âm có công suất P không đổi thì mức cường độ âm tại M là 50 dB. Mức cường độ âm lớn nhất trên đoạn  MN gần nhất với giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Công thức xác định mức cường độ âm:  \(L = 10\log \frac{I}{{{I_0}}}\)

Công thức tính cường độ âm: \(I = \frac{P}{{4\pi {r^2}}}\)

Áp dụng hệ thức lượng trong tam giác vuông. 

Cách giải: 

Trong môi trường đẳng hướng và không hấp thụ âm, trên mặt phẳng nằm ngang có 3  điểm O, M, N tạo thành tam giác vuông tại (ảnh 1)

Công thức tính mức cường độ âm trên đoạn MN: 

L=10logII0=10.logP4π r2I0

Với r là khoảng cách từ O đến 1 điểm trên MN. 

\({L_{\max }} \Leftrightarrow {r_{\min }} = OH\) (với H là chân đường cao kẻ từ O xuống MN).

Áp dụng hệ thức lượng trong tam giác vuông OMN có:

\(OH = \frac{{OM \cdot ON}}{{MN}} = \frac{{80.60}}{{100}} = 48(\;{\rm{mm}})\)

Lại có:  LM=50=10logPIO4πOM2LH=10log PIO4πOH2LH-LM=LH-50=10logOH2OM2

\( \Rightarrow {L_H} = 50 + 20\log \frac{{OM}}{{OH}} = 50 + 20\log \frac{{80}}{{48}} \approx 54,4dB\)

Chọn A. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại 

Cách giải: 

Bảng thang sóng điện từ:  

Thứ tự giảm dần của tần số các sóng điện từ (ảnh 1)

\(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.

Chọn A. 

Lời giải

Phương pháp: 

+ Bước sóng: λ =vf

+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)

Cách giải: 

Thực hiện giao thoa trên bề mặt chất lỏng với hai nguồn kết hợp A, B cách nhau 30cm dao động theo phương thẳng đứng với cùng phương trình (ảnh 1) 

Phương trình dao động của hai nguồn: 

\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)

Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)

Bước sóng: λ =vf=2(cm)

Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)

Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)

Mà: d1=ACd2=CBd22-d12=(15λ)2(d2-d1)(d2+d1)=(15λ)2

Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại) 

Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)

Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.

Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)

225kλ >15λ k<15

Lập bảng tìm các giá trị của k thỏa mãn: 

k

9

225k

225 

75 

45 

25

Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)

d2-d1=9λd2+d1=2259λd2=17λd1=8λ=8.2=16cm

Chọn D. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP