Một lò xo có độ cứng 20 N/m, đầu trên được treo vào một điểm cố định, đầu dưới gắn vật nhỏ A có khối lượng 100g, vật A được nối với vật B có khối lượng 100g bằng một sợi dây mềm, mảnh, không dãn và đủ dài để vật A với vật B không va chạm vào nhau trong quá trình chuyển động. Từ vị trí cân bằng của hệ, kéo vật B thẳng đứng xuống dưới một đoạn 20cm rồi thả nhẹ để vật B đi lên với vận tốc ban đầu bằng không. Bỏ qua các lực cản, lấy \(g = 10\;{\rm{m}}/{{\rm{s}}^2}\) . Tính quãng đường vật B đi được từ lúc thả đến khi vật B đổi chiều chuyển động lần thứ nhất?
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng công thức:
+ Hệ thức độc lập theo thời gian: \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\)
+ Công thức liên hệ s, v, a của chuyển động thẳng biền đổi đều: \({v^2} - v_0^2 = 2as\)
Cách giải:
Ta có:
+ Sau khi kéo vật B xuống dưới 20cm và thả nhẹ ⇒ hệ dao động với biên độ: \(A = 20\;{\rm{cm}}\)
Vì \(\Delta l = 10cm < A \Rightarrow \) vật B đi lên đến vị trí lò xo không biến dạng, lực đàn hồi bị triệt tiêu.
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{s = 30\;{\rm{cm}}}\\{x = \frac{{ - A}}{2}}\end{array}} \right.\)
Sử dụng công thức độc lập ta có: \(\frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{{(A\omega )}^2}}} = 1 \Rightarrow \frac{{{x^2}}}{{{A^2}}} + \frac{{{v^2}}}{{{v_{{{\max }^2}}}}} = 1\)
Mặt khác, vì vật B ném thẳng đứng lên trên nên chuyển động của B là chuyển động thẳng chậm dần đều. Áp dụng công thức liên hệ giữa s,v,a ta có:
⇒ Tổng quãng đường là: \(S = 30 + 15 = 45\;{\rm{cm}}\)
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại
Cách giải:
Bảng thang sóng điện từ:

Có \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.
Chọn A.
Lời giải
Phương pháp:
+ Bước sóng:
+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)
Cách giải:
Phương trình dao động của hai nguồn:
\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)
Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)
Bước sóng:
Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)
Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)
Mà:
Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại)
Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)
Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.
Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)
Lập bảng tìm các giá trị của k thỏa mãn:
k |
1 |
3 |
5 |
9 |
225 |
75 |
45 |
25 |
Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.